

Tampereen teknillinen yliopisto. Julkaisu 531
Tampere University of Technology. Publication 531

Petri Selonen

Model Processing Operations for the Unified Modeling
Language

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB104, at Tampere
University of Technology, on the 29th of April 2005, at 14.00 o´clock.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2005

ISBN 952-15-1346-2
ISSN 1459-2045

Abstract

This thesis proposes a set of model processing operations for manipulating

architecture and design level software engineering models. The approach

draws from well-established and widely used software modeling paradigms

like class diagrams, statecharts, and interaction diagrams. The operations

are based on the usually implicit dependencies that exist between models

describing the same system from di�erent perspectives, at di�erent levels of

abstraction or at di�erent phases of evolution. The Uni�ed Modeling Lan-

guage (UML), as a widely adopted industrial standard providing a common

design vocabulary, is chosen as the target modeling language.

The thesis outlines categories for model processing operations and de�nes

them based on the UML metamodel. The thesis also studies how to combine

the operations to form high-level model processing tasks. The presented

operation categories are transformation operations, set operations, projec-

tion operations, and conformance operations. The main targets for applying

the operations are assumed to be merging, slicing, synthesis, and checking of

models. The presented approach aims towards supporting incremental model

development, a faster and easier creation of models, improved model consist-

ency and comprehension, and a better customization of model processing

tools.

The thesis gives example usage scenarios for applying the operations and

shows how they can be exploited in practice in the maintenance of real-

life product platform architecture. Further, it shows that the operations

can be implemented, integrated with a computer aided software engineering

environment, and succesfully used during software engineering. The tools

and techniques have been implemented and deployed in industrial settings.

iii

iv

Preface

They call me Mr. Knowitall, I am so eloquent;

perfection is my middle name and whatever rhymes with 'eloquent'.

� Primus � �Mr. Knowitall�

This research was made possible by several colleagues I had the privilege to

work with. First and foremost, I want to thank my supervisor, Professor Kai

Koskimies, for all his guidance, support, and sense of humour throughout my

research. I would also like to thank Professor Tarja Systä for providing a sci-

enti�c shoulder to lean on, Jari Peltonen for his endless optimism, and Jianli

Xu for providing excellent opportunities for industrial research collaboration.

Further, I would like to thank all the people who made this thesis possible:

Jani Airaksinen for his endurance while implementing the tools; Jomppa

Koskinen and Mika Siikarla for their work on the research platform devel-

opment; Claudio Riva, Markku Sakkinen, Antti-Pekka Tuovinen and Yaojin

Yang as my co-authors; Ilkka Haikala, Joni Helin, Ludwik Kuzniarz, Tommi

Mikkonen, and Albert Zündorf for their useful comments on the thesis;

Stephen King for proof reading the thesis; and Laph Roaig whose in�uence

on this thesis cannot be overestimated. My sincere thanks are also due to all

the other members of the PRACTISE team, past and present, for providing

a pleasant working environment, and to all the other colleagues whom I have

worked with during the research.

Finally, I would like to express my gratitude to my family and friends,

those few who stayed loyal and supported me through the hard times. You

know who you are. Thank you!

v

vi

Contents

Abstract iii

Preface v

Contents vii

List of Included Publications ix

1 Introduction 1

1.1 Motivation . 1

1.2 Approach of the Thesis . 2

1.3 Thesis Questions . 4

1.4 Thesis Contributions . 5

1.5 Context of the Thesis . 6

1.6 Organization of the Thesis . 7

2 Model Processing and UML 9

2.1 Model Processing Operation Categories 9

2.2 UML Metamodel Architecture 15

2.3 UML and Architectural Pro�les 18

2.4 Relationships between UML Diagram Types 19

2.5 Notes on UML 2.0 . 22

3 Example Operation De�nitions 25

3.1 Conformance Operations . 25

3.1.1 Extended UML Pro�les 25

3.1.2 Stereotype Conformance 28

3.1.3 Relationship Conformance 29

3.2 Set Operations . 31

3.2.1 Deriving Correspondence 32

3.2.2 Union, Intersection and Di�erence 34

3.3 Transformation Operations . 38

vii

3.3.1 Sequence Diagram to Class Diagram Transformation . 38

3.4 Projection Operations . 42

3.4.1 Context Diagram Generation 42

3.4.2 Namespace Migration 44

3.5 Summary . 45

4 Implementing the Model Processing Approach 51

4.1 The xUMLi Model Processing Platform 51

4.2 The VISIOME Visual Scripting Mechanism 53

4.3 The artDECO Architecture Validation Tool 54

4.4 Integrating the Techniques . 56

4.5 Summary . 56

5 Case Study and Evaluation 59

5.1 Context of the Study . 59

5.2 The Target System . 61

5.3 The Target Architecture Model 61

5.4 Pro�le-Based Validation of Architectural Concerns 64

5.4.1 Goals and Applied Method 64

5.4.2 Analysis of the Results 69

5.5 Comparison of Architecture Models 70

5.5.1 Goals and Applied Method 70

5.5.2 Analysis of the Results 72

5.6 Summary . 75

6 Related Research 77

7 Introduction to the Included Publications 81

8 Conclusions 85

8.1 Thesis Questions Revisited . 85

8.2 Future Work . 87

8.3 Concluding Remarks . 88

Bibliography 91

viii

List of Included Publications

[I] P. Selonen, K. Koskimies, and M. Sakkinen. Transformations Between UML Dia-
grams. Journal of Database Management, 3(14):37�55, 2003.

[II] C. Riva, P. Selonen, T. Systä, and J. Xu. UML-based Reverse Engineering and
Model Analysis Approaches for Software Architecture Maintenance. In Proceedings

of the International Conference on Software Maintenance (ICSM'04), pages 50�59.
IEEE CS Press, September 2004.

[III] C. Riva, P. Selonen, T. Systä, A.-P. Tuovinen, J. Xu, and Y. Yang. Establishing a
Software Architecting Environment. In Proceedings of the 4th Working IEEE/IFIP

Conference on Software Architecture (WICSA'04), pages 188�200. IEEE CS Press,
June 2004.

[IV] P. Selonen and J. Xu. Validating UML Models Against Architectural Pro�les.
In Proceedings of the 9th European Software Engineering Conference held jointly

with 10th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (ESEC/FSE 2003), pages 58�67. ACM Press, 2003.

[V] J. Peltonen and P. Selonen. Processing UML Models with Visual Scripts. In
Proceedings of the 2001 Human-Centric Computing Languages and Environments

(HCC'01), pages 264�271. IEEE CS Press, September 2001.

[VI] P. Selonen, T. Systä, and K. Koskimies. Generating Structured Implementation
Schemes from UML Sequence Diagrams. In L. QiaYun, R. Riehle, G. Pour, and
B. Meyer, editors, Proceedings of the 39th International Conference on Technology

of Object-Oriented Languages and Systems (TOOLS USA 2001), pages 317�328.
IEEE CS Press, July-August 2001.

[VII] J. Peltonen and P. Selonen An Approach and a Platform for Building UML Model
Processing Tools. In Proceedings of the ICSE'04 Workshop on Directions of Soft-

ware Engineering Environments (WoDiSEE'04), pages 51�57, May 2004.

[VIII] P. Selonen. Set Operations for the Uni�ed Modeling Language. In P. Kilpeläinen
and N. Päivinen, editors, Proceedings of the 8th Symposium on Programming Lan-

guages and Tools (SPLST'03), pages 70�81. University of Kuopio, June 2003.

The permissions of the copyright holders of the original publications to reprint
them in this thesis are hereby acknowledged.

ix

x

Chapter 1

Introduction

As the strategic value of software increases for many companies, the

industry looks for techniques to automate the production of software.

We look for techniques to improve quality and reduce cost and time-

to-market . . .We also seek for techniques to manage the complexity of

systems as they increase in scope and scale. In particular, we recognize

the need to solve recurring architectural problems . . . One of the key

motivations . . . was to . . . adequately address all scales of architectural

complexity, across all domains.

� The Uni�ed Modeling Language Speci�cation version 1.5

. . . and when the Ball game world within one's own head has no con-

tact with the outside world, this subjective vision must be respected

until someone proves it untrue.

� R. Nelimarkka-Seeck, Self Portrait, PhD thesis, Helsinki University

of Arts and Design, 2000

1.1 Motivation

Typical software systems of today are inherently large and complex. The

importance of modeling is well recognized among the practitioners and ad-

dressed by a number of modeling languages and methods available. While

models are becoming the �rst-class citizens of software engineering, the avail-

able modeling tools have not developed at the same pace, or reached the

same level of maturity as, say, programming tools. The currently available

computer aided software engineering tools�CASE tools�are mostly visual

1

editors that let the user draw diagrams. At best, the tools maintain a model

repository and support code generation and round-trip engineering to some

degree. Although there is no common agreement on the characteristics envir-

onment, there obviously exists a gap between the needs of software engineers

and the available tool support. There is a need for adequate high-level tool

support for the various modeling tasks occurring during conventional soft-

ware engineering.

Such tool support can be based on, for example, the dependencies between

di�erent models describing the same system. As models can be used to ob-

serve the system from di�erent perspectives, at di�erent levels of abstraction,

and at di�erent stages of a design process, they typically share information.

For instance, models produced at successive phases of a software development

process become dependent on each other. Similarly, during the lifetime of a

system it may undergo several modi�cations, implying dependencies between

the original models and the modi�ed ones. In addition, models describing

members of the same product family often have mutual dependencies.

At the time of writing, the ability of the CASE tools, both academic and

commercial, to exploit the dependencies is quite modest. The lack of tool

support leads to a situation where new models are created manually. The

dependencies between the existing models have to be taken into account by

the designer, which requires tedious and error-prone maintenance work and

increases the probability of introducing inconsistencies. As the number of

implicit dependencies between the models increase, the designer also has to

produce new partial models to maintain comprehension of the system model.

1.2 Approach of the Thesis

To address the abovementioned problems, this thesis proposes a set of model

processing operations for manipulating architecture and design level software

engineering models. The approach draws from well-established and widely

used software speci�cation paradigms like class diagrams, statecharts, and

interaction diagrams. The operations are built exploiting the dependencies

between models and they are combined to form model processing tasks of

higher level of functionality to perform various software engineering tasks.

It is assumed that most of the tasks occurring during conventional software

engineering can be built as such model processing tasks. The presented

research futher aims to provide tool support for automating the tasks. In-

stead of creating several high-level tools for dedicated purposes, most model

manipulation tasks occurring during conventional software development are

expected to be built as combinations of the model processing operations.

2

The presented operation categories are conformance operations, set oper-

ations, transformation operations, and projection operations. Conformance

operations are used together with pro�les, a special model type stating the

legality criterion, to de�ne and enforce domain-speci�c constraints and con-

ventions. Set operations produce a new model based on union, intersection,

or di�erence of existing models. Transformation operations produce a new

model based on an existing model of another type. Projection operations

produce a new model based on an existing model of the same type. The

operations categories are discussed in more detail in Chapter 2. The main

usage scenarios are expected to be the synthesis, merging, slicing, and check-

ing of models. The thesis questions, presented later in this chapter, are

drawn along these scenarios. The presented approach aims at supporting in-

cremental model development, faster and easier creation of models, improved

model consistency and comprehension, and better customizability of model

processing tools.

To establish a common de�ninition for the operations using a concrete

modeling language, this language is expected to meet the following prerequis-

ites: 1) it must have a well-de�ned metamodel, including an abstract syntax

and a set of well-formedness rules, and 2) it must have su�ciently de�ned

semantics to map its modeling concepts to the concepts of the adopted

paradigms. In the context of this thesis, the Uni�ed Modeling Language

(UML) version 1.5 [38] is chosen as the target modeling language. UML has

become an industrial standard for the presentation of various design artifacts

in object-oriented software development. It provides di�erent diagram types

supporting the development process from requirements speci�cation to im-

plementation. Essentially, UML is not a single modeling language but a set

of design languages, each represented by a particular diagram type, and its

metamodel is structured accordingly.

The terminology used in this thesis has been aligned with the one provided

by the UML speci�cation. A model is de�ned as a description of a system,

given in terms of the abstract syntax of the selected modeling language (e.g. a

UML model is a UML metamodel instance). A diagram is a visualization of

a model, emphasizing a particular modeling paradigm. The type of model

or diagram implies the used metamodel subset. Further, the terms model

fragment and system model are used when it is necessary to distinguish

between an incomplete model and a complete model describing a system at

a given point in time. This division is not absolute, however, as the models

are always tied to a particular context.

While a model may be presented with an arbitrary number of diagrams,

a diagram is assumed to imply a particular model fragment. Each diagram

type has speci�c semantics and notation, and provides a mapping between

3

notational elements and metamodel elements. As the presented model pro-

cessing operations are de�ned in terms of model element types, the terms

model and diagram can be used interchangeably in the context of this thesis

unless otherwise stated. Nevertheless, the motivation and rationale behind

the presented approach lies heavily in the role of diagrams as a means for

communicating software speci�cations between designers. The relationship

between models and diagrams in the UML context is described in Chapter

2.

1.3 Thesis Questions

To elaborate the approach, a set of example usage scenarios occurring during

software engineering work are given as thesis questions. The questions are

divided along the lines of synthesis, merging and slicing, and checking of

models. The hypothesis is that the the presented model processing approach

can be used to address the questions.

Synthesis of models is used for producing new models on the basis of

existing models. In the context of this thesis, synthesis is used for both

generating projections of existing models and for transforming models of one

type into models of another type. The questions to be answered include the

following:

� How to describe the information implied by an existing model using

another modeling paradigm to express a di�erent point of view (e.g. a

structural model implied by a behavioral model)?

� How to compose a model according to a given composition criteria

in order to emphasize an alternative point of view (e.g. architectural

concern)?

Merging and slicing of models is used for composing and decomposing

models. The former is used for adding the information contained by a model

fragment to another model fragment or a system model. The main motivation

for merging of models stems from the needs of incremental and iterative

model development. Model slicing is used for creating partial views of models,

focusing on a particular viewpoint, possibly presented by other models of

di�erent types. It is a useful technique for emphasizing certain aspects of the

model while suppressing others to improve model comprehension. The slicing

criterion is often presented by another model� sometimes of a di�erent type

4

than the model to be sliced. The questions to be answered include the

following:

� How to allow di�erent stakeholders to introduce model increments to

the system model?

� How to support model comprehension by comparing models describing

the system from di�erent perspectives, possibly using di�erent model-

ing paradigms (e.g. static and dynamic views)?

Checking of models is used for examining if two models are in agreement

with each other. In this context it focuses on providing the user with means

for checking individual models for mutual consistency, and for conformance

to domain, product platform, or project speci�c architecture and design level

constraints and conventions. The questions to be answered include the fol-

lowing:

� How to ensure that the concepts and their relationships in a system

model are in agreement with domain speci�c conventions, rules, and

restrictions?

� How to con�rm that architecture or design level models at (e.g. di�erent

stages of evolution) are in agreement with each other?

The questions will be put in the context of a case study on establishing an

architecture maintenance process and returned to while drawing the conclu-

sions in Chapter 8.

1.4 Thesis Contributions

This thesis presents an approach to de�ne and implement a set of primitive

model processing operations based on a metamodel describing the selected

modeling language. It is shown that these operations can be combined to

form meaningful high-level software engineering tasks and that these tasks

can be exploited during real-life software engineering. It is further shown

that the model processing operations can be used as a basis of tool support

in computer aided software engineering environments. The approach also

supports customizing and parametrizing the tasks for di�erent domains. The

thesis outlines categories for the model processing operations and speci�es

them in terms of the UML metamodel. It presents a novel approach to

5

using the UML extension mechanism to express and enforce domain-speci�c

modeling conventions, constraints, and rules. The thesis gives example usage

scenarios for applying the operations and shows how they can be exploited

in practice in the maintenance of a real-life product platform architecture.

1.5 Context of the Thesis

The research work presented in this thesis has been carried out in the PRAC-

TISE research group1 at the Institute of Software Systems of Tampere Uni-

versity of Technology. The research started with the ATOS (Advanced Tools

for Object-oriented Software Development) project during 1999�2002. The

project was funded by the National Technology Agency of Finland (TEKES

grant 40908/98) together with Nokia, Metso Automation, Sensor Software

Consulting, Ebsolut and Plenware. The main areas of research were UML-

integrated visual scripting mechanisms, UML model transformation, abstrac-

tion, synthesis, and checking techniques, and reverse engineering techniques

producing UML models. In particular, the project investigated new kinds of

automated tool support that could be integrated with CASE tools.

The research work was continued with the UML++ project (Techniques

for UML Based Software Development) during 2001�2004, funded by the

Academy of Finland. The project aimed at investigating new techniques

facilitating and exploiting the use of UML in software development. The work

particularly concentrated on automated model synthesis in UML, analyzing

software systems with UML, and developing infrastructures for UML-based

model processing. The project studied techniques to support both forward

and reverse engineering and approaches to analyze and understand software

systems using UML. The project was carried out in co-operation with the

University of Helsinki and the University of Tampere.

The research was further continued with ART (UML Tool Kit for Software

Architecture Modeling and Analysis Introduction) �nanced by, and carried

out in close co-operation with, the Nokia Research Center in Helsinki dur-

ing 2002�2004. The project aimed at developing general infrastructure for

UML based software architecture modeling to be used in a prototype envir-

onment for modeling, analyzing, communicating, documenting, maintaining,

and monitoring of architecture design artifacts. During the course of the pro-

ject, an additional goal was set to apply the techniques and tools on reverse

engineered software architecture models provided by the customer and to use

during case studies to validate the ART approach.

1http://practise.cs.tut.�

6

1.6 Organization of the Thesis

The introductory part of this thesis is organized as follows. Chapter 2 dis-

cusses model processing and UML in general, outlines the operation cat-

egories and discusses how the model processing operations can be used to

compose high-level model processing tasks. Chapter 3 outlines speci�cation

techniques and gives example de�nitions for each operation category. In

Chapter 4, the implementation of the operations is discussed, along with the

implementation platform, and other related issues. Chapter 5 describes how

the operations are used in a concrete case study. Related research is presen-

ted in Chapter 6. The included publications are introduced in Chapter 7.

Finally, thesis questions are revisited with concluding remarks in Chapter 8.

7

8

Chapter 2

Model Processing and UML

This chapter discusses how the relationships between di�erent modeling par-

adigms, and dependencies between model fragments, are used to de�ne the

model processing operations and how they are combined to form model pro-

cessing tasks. UML and its role as the modeling language of choice is dis-

cussed in the second half of the chapter.

2.1 Model Processing Operation Categories

Models describing the same system typically share information and are mutu-

ally dependent. Following this rationale, the following types of dependencies

can be identi�ed, among others (Koskinen et al [29]):

� view dependencies occur between the logically related elements in dif-

ferent model fragments of the same system model;

� process dependencies occur between model fragments produced at dif-

ferent phases of a software development process;

� evolution dependencies occur between model fragments produced at

di�erent stages of system evolution; and

� family dependencies occur between model fragments describing mem-

bers of a software product family sharing similar structure and func-

tionality.

The dependencies are present and strongly intertwined in software develop-

ment processes, and they vary between di�erent organizations, processes, and

domains. Figure 2.1 illustrates the di�erent kinds of dependencies. Typic-

ally, when moving from one phase to the next, new design or implementation

9

Product 2

Product 1

Version 1

view
dependencies

process
dependencies

Version 2

evolution
dependencies

family
dependencies

Figure 2.1: Examples of dependency types

level information is added to the models, yielding processwise dependent

diagrams. The added information is then taken into account in the other

models constructed in that phase, yielding view dependent diagrams. These

diagrams are modi�ed during maintenance, leading to evolutional depend-

encies. The presented set of dependency types is not exhaustive; rather, it

provides a useful vechile for reasoning with the usage scenarios for di�erent

operation types.

Figure 2.2 illustrates a set of view dependencies between di�erent dia-

grams describing a simpli�ed car rental system. The �gure shows four types

of diagrams. The class diagram shows a Customer and a RentalCenter man-

aging a set of Vehicle entities (i.e. a Car and Truck). The interaction diagram

shows an unnamed instance of a Customer renting a car from RentalCenter.

The RentalCenter sets a Car instance reserved and returns it to the Customer.

The component diagram shows components RentalCenter and Customer with

an interface Customer Services. The statechart diagram shows three states

for Car. The dependent parts among the diagrams are shown in black while

the independent parts are in gray.

To exploit the dependencies, four major categories of model processing

operations are introduced together with characterizing signatures. The oper-

ands are given in form D
t where D is a diagram of type t. P denotes a pro�le

which is a special diagram type stating legality criterion. A pro�le can be

10

Vehicle

Car

RentalCenter

rent(vechileType) setReserved()

reg_no

Customer

client_no

manages

1 0..*

: Customer
:

RentalCenter

rent("a car")

aCar

Rental
Center

Customer

Account

aCar : Car

setReserved()

ok

Free Reserved

In Use

set
Reserved

begin /
startTimingrelease

class diagram

component diagram statechart diagram for Car

interaction diagram

Customer
Services

Truck

Account
Services

Figure 2.2: Examples of dependencies between diagrams

seen to represent metalevel information that a model must be in agreement

with. The term is borrowed from the UML vocabulary. Pro�le variants are

described in more detail later in this chapter.

For simplicity, the operations are either presented as unary or binary. The

connectivity properties of the operations allow them to be combined to form

more complex expressions. The presented model processing approach relies

heavily on the ability to build arbitrary complex functionality out of primitive

operations. In cases where a single diagram is not a su�cient starting point,

the input diagram can be composed of several diagrams of the same type

using other model processing operations, or the operations can be applied in

an incremental manner.

Conformance operations (P�Dt
�!Boolean) o�er a way to validate

whether a given model conforms to a pro�le. P is a pro�le describing the

legality criterion and Dt is the model to be checked. The result is a boolean

value indicating whether or not the model is in agreement with the pro-

�le. An illustration of a pro�le and a conforming model is shown in Figure

2.3. A conformance operation gives the interpretation for this pro�le. Typ-

ically, the pro�le explicitly states the allowed structure the model must be

analogous with. In the example, the pro�le can be interpreted to state the

11

<<controller>>

...a Controller
<<displayAPI>>

...an API

<<displayImpl>>

..an API impl
<<terminal>>

...a Terminal

1

2

profile diagram P

diagram A

<<controller>>
Main Unit

<<displayAPI>>
TFT API

<<displayImpl>>

TFT
<<terminal>>

FrontTerminal
<<terminal>>

BackTerminal

Conformance
Operation true

Figure 2.3: Example of a conformance operation

allowed relationships between the concepts. The particular concepts of in-

terest are marked with matching guillemets: �controller�, �terminal�,

�displayAPI�, and �displayImpl�. The pro�le further states that a

�controller� must have exactly two associations to di�erent �terminal�

elements, a �controller� can have a dependency to a �displayAPI� ele-

ment, and a �displayImpl� can realize the interface �displayAPI�. In

this particular example, the relationships between the model elements are

family dependencies. The pro�les state conventions and constraints on the

way the elements are to be used in the context of e.g. a given domain, product

family, or design style.

Set operations (Dt
�Dt

�!Dt) generate a new model based on two ex-

isting models of a particular type. The operation assumes there is a way of

deriving a correspondence relationship between the elements belonging to the

input models representing the same semantic concept. The set operations

described in this thesis are variants of union, intersection, and di�erence.

Typically, a union can be used for merging models, intersection for detecting

the commonalities of models, and di�erence for detecting the di�erences of

models. The operations are expected to provide support for analyzing the

12

Client

name

<<interface>>

Service API

ServiceAccount

accounts
1

1..*

diagram A

Client <<interface>>
Service API

Another
Service

diagram B

Client

name

<<interface>>

Service API

Another
Service

Account

accounts
1

1..*

result

Service

Account

Set Operation

Figure 2.4: Example of a set operation

models, for improving model comprehension, and for incremental and iterat-

ive software development. They are also a key mechanism when combining

the model processing operations.

An illustration of applying a set operation is given in Figure 2.4. The left-

hand side of the �gure shows two models describing a system for di�erent

stakeholders. Assuming sound engineering practices, the elements with the

same name should denote the same semantic concept (e.g. Client, Service

API, Account). By exploiting this information, the model elements assumed

to represent the same semantic concepts can be merged. The result of a

union operation is shown on the right-hand side of the �gure.

The types of dependencies present in the �gure can be view dependencies,

but they may also result from the software engineering process used, hence

being process or evolution dependencies. If the two input models represent

the design of two di�erent products of a common product family, they can

also be classi�ed as family dependencies.

Transformation operations (Ds
�!Dt, s6=t) o�er a way of synthesizing

a new model based on an existing model of another type. One example of

a transformation operation is the synthesis of a statechart model from an

interaction model where partial sequences are merged to form a behavioral

speci�cation. Another example is the synthesis of a class model from an

interaction model.

13

Client Service

foo()

result
: Client : Service

foo()

diagram A

Transformation
Operation

Figure 2.5: Example of a transformation operation

An illustration of a transformation operation is given in Figure 2.5. The

source model, shown on the left-hand side of the �gure, describes a simple

interaction model with two unnamed participanting instances of (Client and

Server), one message with operation call foo(), and one return message. The

right-hand side of the �gure shows the resulting structure model as implied

by the source model. It contains a class speci�cation for Client and Server

together with an operation speci�cation for foo(). In addition, to facilitate

the communication between the classi�er instances, a dependency is shown

between the two classes.

The dependencies in Figure 2.5 can be view dependencies. The transform-

ation operation may also be used to perform tasks related to the software

engineering process used, thus implying process or evolution dependencies.

For example, a set of sequence diagrams, describing the realization of a use

case, can act as a starting point for a design level class diagram.

Projection operations (Dt
�!Dt) o�er a way of generating a new model

of an existing model of the same type. An illustration of a projection op-

eration is given in Figure 2.6. The left-hand side of the �gure shows the

source structure model for the operation. The model has four classes, one

composition association, one dependency, and one generalization (inherit-

ance). The right-hand side of the �gure shows the resulting projection of the

source model. In the result, the whole-part relationship between classes Main

Unit and Controller is collapsed, as is the inheritance hierarchy of classes

Display and TFT monitor. The original controls dependency between classes

Controller and TFT monitor remains intact, but now it is between the com-

pressed classes Main Unit and Display. The example projection operation

e�ectively implements abstraction of the class diagram using a relationship�

based compression.

Again, the dependencies between the source and target models can be

view dependencies. Dependending on the software engineering process used,

14

Main Unit Display

TFT monitorController

1

0..*

diagram A

Main Unit Display

result

controls

controls
Projection
Operation

Figure 2.6: Example of a projection operation

the projection operation can be a refactoring operation, or perhaps the ap-

pliance of, say, a design pattern. In such a case, the projection operation

implies process or evolution dependencies between the source and the target

models.

The model processing approach provides support for typical incremental soft-

ware engineering processes: rather than producing one complete model, it

allows the use of individual, although conceptually overlapping, model frag-

ments. A simple example of combining model processing operations to form

higher level model processing tasks is shown in Figure 2.7. The �gure illus-

trates how the structure implied by an interaction diagram is added to an

existing structure diagram: the sequence diagram is transformed into a class

diagram and the resulting class diagram is merged with the original class dia-

gram. The presented task can be used, for example, to support incremental

model development where the structure implied by the sequence diagram is

merged to the existing structure model presented by the class diagram. By

highlighting the common and individual parts of the original diagrams on the

resulting diagram, the task can be used to support model comprehension.

2.2 UML Metamodel Architecture

UML is a �graphical language for visualizing, specifying, constructing and

documenting the artifacts of a software-intensive system� (OMG [38]). UML

models are presented, constructed, and manipulated as diagrams that can

view a system from di�erent perspectives, making them mutually dependent

and overlapping. UML version 1.5 presents nine di�erent diagram types, each

emphasizing a particular concern: class diagrams, sequence diagrams, collab-

15

A

opA()

B

C D

opD()

: A

opB()

: B

diagram A

diagram B

opB()

A

opA()

B

C D

opD()

result

Union
Set Operation

Transform To
Class Diagram

Figure 2.7: Example of combining model processing operations

oration diagrams, statechart diagrams, activity diagrams, object diagrams,

component diagrams, deployment diagrams, and use case diagrams.

The model processing approach is, in principle, independent of the soft-

ware engineering process used and the details of the particular software mod-

eling language. However, UML brings di�erent speci�cation paradigms to-

gether by adopting them as its sublanguages, each represented by a particular

diagram type, and thus provides a common platform for de�ning and imple-

menting the operations in practice. Consequently, UML is a key enabling

factor for the approach presented in this thesis. UML is widely adopted by

the software industry and UML-based modeling is supported by a number

of CASE tools. Providing a common design vocabulary with a standard-

ized metamodel is one of UML's most important contributions to software

engineering practices.

Models are, �rst and foremost, used for communication. One way to facil-

itate a common understanding of models is to use metamodels. Metamodels

are models that describe other models: the allowed metaelements, their re-

lationships and properties. UML is de�ned by its metamodel, including an

abstract syntax, well-formedness rules, informal semantics, and notation spe-

ci�cation. The abstract syntax is given as a MOF model, expressed using

the UML class diagram notation. The well-formedness rules are expressed

using the Object Constraint Language (OCL) (OMG [38] Chap. 6).

UML builds on the OMG Meta-Object Facility (MOF) [35], a metadata

16

Class

name : String

Association

AssociationEnd

name : String
multiplicity : Multiplicity

Attribute

2..* +connection

1

1

+participant 0..*

+association

+feature

0..1

0..*

+type1

1
Person

name : String

Vehicle

name : String
yearOfPurchase: Integer

+owner

0..*

+owned
Vechile

User Objects

UML Model

UML metamodel

Figure 2.8: Illustration of the UML metamodeling architecture

architecture designed to support the construction of metamodels. MOF is

a meta-metamodel for de�ning metamodels for various domains and model-

ing languages. It is a self-describing, object-oriented metamodeling frame-

work aligned with the UML class diagram constructs. The architecture of

UML is based on a four-layer metamodel structure comprising of the fol-

lowing layers: user objects, models, a metamodel (a MOF model) and a

meta-metamodel (MOF metamodel). The meta-metamodel layer is the in-

frastructure for a metamodeling architecture and it de�nes the language for

specifying metamodels. The metamodel layer is an instance of the meta-

metamodel and de�nes the language for specifying a model. An example of

the UML architecture is shown in Figure 2.8, the meta-metamodel is omitted

for simplicity. The metamodel excerpt shows metaclasses connected by meta-

associations: a Class can contain Attributes and participate in Associations

through AssociationEnds. An example UML model is shown in the middle

of the �gure, showing classes Person and Vehicle. Finally, some user objects

are shown in the bottom of the �gure.

While the abstract syntax and well-formedness rules are formally de�ned,

UML semantics are given in natural language. This is both a factor behind

17

UML's rapid adoptation by the software industry and also the reason why

UML models su�er from being ambiguous. E�orts have made to formalize

parts of the current UML metamodel semantics (e.g. the precise UML group1,

Evans and Kent [16]). However, the contradictory requirements for precision

and generality seem to restrict these attempts to very limited domains.

Although UML o�ers a rich variety of modeling constructs, it is some-

times desirable to introduce new domain-speci�c extensions to the modeling

language. The Extension Mechanisms package speci�es how UML model

elements are customized and extended with new semantics using stereotypes,

constraints, tag de�nitions, and tagged values. A coherent set of extensions

constitutes a UML pro�le (OMG [38], Sec. 2.6). A stereotype e�ectively spe-

cializes a metaclass and extends its semantics for a particular purpose (see

e.g. OMG [38] Chap. 4). The extensions must be strictly additive to the

standard UML semantics, i.e., they are a means for specializing UML. The

UML pro�les can be seen as a UML-speci�c implementation of the general

pro�le concept introduced in Section 2.1.

UML pro�les are a lightweight built-in extension mechanism for UML.

Although it is outside the scope and intent of UML speci�cation, it is also

possible to extend UML metamodel by explicitly adding new metaclasses

and other metaconstructs. However, such a heavyweight mechanism loses

the major asset of having a common and standardized metamodel. In the

context of this thesis, only pro�les are used.

2.3 UML and Architectural Pro�les

This thesis works with architecture and design level UML models. While

UML has established itself as a software design language, it has signi�c-

ant problems when documenting software architectures as pointed out by

e.g. Ivers et al [20], Medvidovic et al [30], and Riva et al [47]. The problems

are related not only to the inadequacies of UML modeling concepts when

representing architectures, but also to the lack of methodological support for

UML-level architecture design. The latter can be addressed with architec-

tural pro�les [IV], another variant of the pro�le concept previously described

in this chapter.

Architectural pro�les concretize the work context of software architects.

They are used for de�ning domain-speci�c architectural constraints and con-

ventions. They de�ne the structural constraints and rules of the domain

(e.g. product platform) in question and are used to drive, check, and auto-

mate the software architecture design process and the creation of architec-

1http://www.cs.york.ac.uk/puml/

18

tural and design views. They should be followed in order to guarantee that

resulting architecture design has necessary properties and lacks any undesir-

able ones. It is argued that they are on an appropriate abstraction level to

express architectural constraints.

Figure 2.9 shows the architectural model structure used in this work,

adopted and developed from the conceptual, module interconnection, execu-

tion, and code view model of Soni, Nord and Hofmeister [54]. It is comprised

of three main parts: architectural pro�les, a system context model, and ar-

chitectural views. Architectural pro�les contain a conceptual pro�le and a

set of view pro�les. The conceptual pro�le should specify the architectural

style and the validation rules. It de�nes the nature of the system, as all

architectural views should conform to it. The domain model is included for

the sake of model completeness; how the mapping is done is up to the par-

ticular process used and outside the scope of this thesis. A view pro�le adds

new concepts that are speci�c to a particular view and emphasizes a par-

ticular concern or viewpoint. Conceptual and view pro�les can be further

divided into stereotype de�nition pro�les and constraint de�nition pro�les.

The former de�ne the concepts relevant to the particular viewpoint in the

form of stereotypes, while the latter constrain how the stereotypes can be

used.

Concrete software architecture is described with a system context model

and several architectural views. The former de�nes the system border and

deployment environment, typically showing how the system or subsystem

connects to other (sub)systems through interfaces it implements or depends

on. The latter contain all UML models describing the software system itself.

A view should use only the subset of UML elements and extensions de�ned

in the corresponding view pro�les, and follow the rules and constraints they

impose. What views are needed in the system description may vary from

case to case, depending on what main architectural concerns the architects

are going to tackle.

The pro�le-based approach for architecture validation is applied in the

case study presented in Chapter 5. Conformance operations are the main

vechile for realizing the approach.

2.4 Relationships between UMLDiagram Types

Most widely adopted general-purpose software modeling languages preceding

UML were presented in the context of respective design methodologies like

OMT [48], the Booch Method [6], OOSE [21], and Structured Analysis [61],

to name a few. Each design methodology introduced its own notation, relying

19

<<systemModel>>
Architecture Model

Architectural Profiles

<<profile>>
Conceptual

Profile

View Profiles

<<import>>

Architectural Views

<<appliedProfile>>

Domain Model
<<Mapping>>

<<appliedProfile>>

System Context Model

<<appliedProfile>>

<<import>>

Figure 2.9: The structure of an architectural model ([IV], Fig. 1)

solely on giving example �gures on how to draw the diagrams. UML brings

the di�erent modeling languages together and aims to provide a common,

although loose, metamodel level representation for the diagrams. This facil-

itates the exchange of information between tools and the writing of generic

model processing operations.

It is often assumed that there exists a single, complete, and well-formed

system model expressed in UML. While appealing, this is very rarely the

case in practice. The individual diagrams are often independent speci�ca-

tions, although they are conceptually describing the same elements. To make

matters worse, although UML is a visual language by de�nition, the Nota-

tion Guide ([38], part 3) does not provide a well-de�ned mapping between

UML diagrams and UML models or model fragments. Given that UML is a

visual language meant for communicating, it is surprising that the relation-

ship between models and diagrams have been omitted as a technical question

to be addressed by tool vendors. This has also led to serious compatibility

issues between di�erent CASE tools.

As described previously in this chapter, a transformation operation aims

20

at representing the modeling information of its source diagram with the mod-

eling concepts of its target diagram. To support de�ning the operations, the

transformation operations can be classi�ed as full transformations, strong

transformations, supported transformations, and weak transformations [I].

The categorization is based on the information content an operation pre-

serves, relative to the expressiveness of the target diagram. The categories

are implied by the varying strength of relations between di�erent pairs of dia-

gram types: the weaker the relation, the more user interaction and guidance

is required to make the operation useful.

Full transformations convey the information present in the source dia-

gram adequately to the target diagram. These diagram pairs share a large

common metamodel subset, making the interpretation of the transformation

an identity relationship. In UML, there are two semantically close diagram

pairs: sequence and collaboration diagrams, and statechart and activity dia-

grams. For example, while a collaboration diagram emphasizes the distribu-

tion of objects, the interaction itself can be equally expressed using a sequence

diagram; both diagram types are called interaction diagrams in UML.

Strong transformations are based on semantic relationships between dia-

gram types having di�erent metamodels. Used together with a set of heuristic

rules, a signi�cant amount of information from the source diagram can be

conveyed. For example, the behavior described by a sequence diagram also

implies structure, which can be expressed using a class diagram [VI].

Supported transformations are based on conventions and user inter-

action. For example, a class diagram can be transformed to a component

diagram. Without additional guidance from the user, supported transform-

ations generally become weak.

Weak transformations typically produce only a diagram skeleton as a

starting point for design. Categorization for the operations is given in Figure

2.10, together with the abbreviations for di�erent diagram types. The �gure

emphasizes the central role of sequence diagrams, statechart diagrams, and

class diagrams.

The given categories for the transformations are �rst and foremost used for

suggesting the appealing transformations. Strong transformations are con-

sidered to be the most interesting category of transformation operations.

21

Object
Diagram
(OBD)

Deployment
Diagram
(DED)

Component
Diagram
(COD)

Class
Diagram

(CLD)

Sequence
Diagram
(SED)

Statechart
Diagram
(SCD)

Collabor-
ation

Diagram
(CBD)

Activity
Diagram
(ACD)

full transformation

strong transformation

supported transformation

Figure 2.10: Categorization for the transformation operations ([I], Fig. 5)

Figure 2.10 displays, in total, six strong transformations. The �gure un-

derlines the fact that behavioral diagrams contain more information than

structural diagrams.

2.5 Notes on UML 2.0

While UML 1.5 [38] is the latest o�cial UML speci�cation issued by the

OMG, the next major revision, UML 2.0 [39], has reached its �nalization

phase and is expected to be released during 2005. In particular, it will

introduce major changes to the structure of the UML speci�cation. It will

align UML with the other OMG standards and address issues not present

in UML 1.5. Moreover, it will introduce a set of new diagram types, make

some other types obsolete, and present a completely renewed metamodel

speci�cation. In particular, the activity diagrams of UML 2.0 are based

on Petri-net like semantics, and the sequence diagram notation has been

strenghtened with new new features and improved notation.

While UML 2.0 will signi�cantly di�er from UML 1.5, the underlying

principles will remain relatively stable. As stated by the OMG UML 2.0

Superstructure Request for Proposal document ([34], Sec. 6.3), the new spe-

22

ci�cation should maintain backward-compatibility with UML 1.x speci�ca-

tions. Further, most modeling techniques introduced by UML were well-

established before UML emerged. This follows directly from the nature of

UML: it aims at providing a uni�ed modeling language that o�ers a common

base for expressing the modeling artifacts present in software engineering.

Consequently, while the technical de�nitions given in this thesis will change

in some parts, the underlying principles will not. Of the presented model

processing operation categories, the changes will mainly a�ect the transform-

ation operations, also opening up new possibilities for stronger tool support.

Similarly, OMG will issue a major revision of the Meta Object Facil-

ity, MOF 2.0 [37]. As the speci�cation states (Chap. 16) that �MOF 1.4

metamodels can be translated to MOF 2.0 models based on a straigthfor-

ward mapping that can be fully automated�, the e�ects of the migration to

the approach presented in this thesis are expected to remain negligable.

23

24

Chapter 3

Example Operation De�nitions

This chapter demonstrates how to de�ne the model processing operations by

giving example de�nitions for each operation category. The sections describ-

ing conformance operations, set operations and transformation operations

are extended from the included publications [IV], [VIII] and [I], respectively.

The operations that are presented in more detail have been used in the case

study described later in Chapter 5.

3.1 Conformance Operations

As previously shown in Figure 2.3 (Section 2.1), the architectural pro�le nota-

tion somewhat resembles that of design patterns: both present example-like

structures that the user models should conform to. The pro�les explicitly

manifest the allowed structures, making them analogous with the conforming

models. UML pro�les, on the other hand, are used for specializing existing

metaclasses with user-de�ned stereotypes and for introducing additional con-

straints upon them. The pro�les describe the allowed structures at metalevel,

thus making them more obscure and harder to understand for a designer not

familiar with the UML metamodel. In that sense, architectural pro�les are

more intuitive when compared to standard UML pro�le notation.

3.1.1 Extended UML Pro�les

To preserve the intuitive nature of the architectural pro�les while still bene-

�ting from the standard UML pro�le mechanism, the conformance operations

can be interpreted as translations between the two notations. Following this

rationale, the architectural pro�les are presented as UML pro�les, and the

outcome of the conformance operations is determined by the well-formedness

25

of the UML model in respect to the UML pro�les. However, UML pro�les

can only contain tag de�nitions, stereotypes, constraints, and data types

([38], Part 2, pp. 190), preventing the designer from explicitly constraining

the inherited meta-associations among user-de�ned stereotypes. The derived

connections cannot be explicitly expressed but are lost in localized OCL con-

straints.

This shortcoming is addressed by using an extended form of the UML

pro�le mechanism as presented by Selonen et al [51]. The extended pro�les

contain two parts: a standard UML metamodel part, showing the subset of

the metamodel that is being extended, and an extension part, showing the

user-de�ned stereotypes and the inherited meta-associations with additional

constraints. The mechanism follows the spirit of UML, as the standard ex-

plicitly states that a pro�le is not a �rst-class extension mechanism: it can

not modify or restrict the existing UML metamodel ([38], Sec. 2.6.1). All

restrictions presented in an extended pro�le target only the user-de�ned ste-

reotypes and therefore do not a�ect standard UML models. Furthermore,

the extended pro�les can be normalized into standard UML pro�les with

additional OCL constraints.

Figure 3.1 shows an example of an extended UML pro�le. The upper

side of the �gure shows the UML metamodel subset that is being extended,

consisting of Class and Dependency metaclasses, and two meta-associations

between them. The lower side shows three user-de�ned stereotypes: �MyClient�,

�MySupplier�, and �MyDependency�. The base classes of stereotypes are

shown using �lled generalization arrows (as suggested by UML 2.0, [39]

Sec. 18.3.1) and the inherited meta-associations with hollow-headed gener-

alization arrows. The multiplicities on the inherited meta-associations show

additional constraints on the stereotypes. A {strict} constraint at a meta-

association end implies that the other end of the meta-association is always

required to point to a given stereotype ([51], pp. 5) at an instance level.

When necessary, the pro�le can be �normalized� to contain only the meta-

class de�nitions. The additional constraints implied by the inherited meta-

associations with the {strict} constraint and restricted multiplicities can be

expressed using OCL as follows:

context MyDependency inv:

-- interpretation for {strict} constraints:

self.supplier->forall(stereotype->includes(MySupplier)) and

self.client->forall(stereotype->includes(MyClient)) and

-- interpretation for restricted multiplicities:

self.supplier->size = 1 and self.client->size = 1

context MySupplier inv:

26

<<metaclass>>

Class
<<metaclass>>

Dependency
1..* *

<<stereotype>>

MyClient

<<stereotype>>

MyDependency

+supplierDependency+supplier

+clientDependency+client

1..* *

<<stereotype>>

MySupplier

{strict}

1

1

{strict}

{strict}

{strict} *

*

metamodel

profile

Figure 3.1: Example of an extended pro�le

self.supplierDependency->forall(stereotype->includes(MyDependency))

context MyClient inv:

self.clientDependency->forall(stereotype->includes(MyDependency))

For clarity, the above invariants use the name of the stereotype as their con-

text instead of the extended metaclass. When working with several archi-

tectural pro�les, the pro�les can be translated individually to the extended

pro�le representation, and these pro�les can be then merged together. The

inherited meta-associations, together with the {strict} association ends, res-

ult in a disjunction of constraints.

While the extended pro�le mechanism is useful when introducing con-

straints on individual stereotypes, it is sometimes necessary to place con-

straints on an entire model. To make this easier, two assumptions are made:

(1) there is a pointer to a universal namespace, i.e., a root namespace from

which it is possible to navigate to all model elements belonging to the partic-

ular UML model, and (2) such a navigation mechanims exists, i.e., there is a

way to traverse the transitive closure of the model. The former assumption

is realized by assuming a root namespace element for the model and pro�les,

modelRoot and profileRoot, respectively. A mechanism satisfying the latter

assumption (the �nd operator) is discussed by e.g. Siikarla, Peltonen, and

Selonen ([53], pp. 179). In practice, the assumptions are typically realized

by any reasonable model processing environment.

27

3.1.2 Stereotype Conformance

Description

stereotype_conformance(P: Profile, M: Model): Boolean;

Every non-standard stereotype in model M must be de�ned in a

stereotype de�nition pro�le P. Every classi�er in the model must

have a properly de�ned stereotype.

Speci�cation

In principle, the former part of the de�nition follows directly from the UML

speci�cation: for a stereotype to exist, it must be properly de�ned. A form-

alization for the latter part can be given as an OCL invariant as follows:

context Classifier inv:

stereotype->exists(s | P.find(t | s=t)->notEmpty())

The constraint states that each Classi�er in the model must have a stereotype

de�ned in the stereotype de�nition pro�les. See �UML Notes� below for

further discussion.

Example

An example of applying the stereotype conformance operation is given in Fig-

ure 3.2. The left-hand side of the �gure shows a stereotype de�nition pro�le

with two user-de�ned stereotypes �OwnCategory1� and �OwnCategory2�.

The notation follows the one suggested by the UML speci�cation ([38], Fig. 4-

1). The right-hand side shows an example model with the upmost class

Foobar conforming to the stereotype conformance de�nition, while the bot-

tom class Foo has an unde�ned stereotype �OwnSubCategory�.

Pragmatics

In essence, this rule requires that only the properly introduced user-de�ned

concepts, expressed with stereotypes, are allowed to be used in the models.

Variants

The given speci�cation for stereotype conformance is rather restrictive. When

necessary, it can be relaxed to allow the use of classi�ers without stereotypes,

and also the use of user-de�ned stereotypes not present in the stereotype

de�nition pro�les.

28

<<metaclass>>
Class

<<stereotype>>
OwnCategory1

<<stereotype>>
OwnCategory 2

<<stereotype>> <<stereotype>>

<<OwnCategory1>>

Foobar

<<OwnSubCategory>>

Foo

stereotype
conformance

profile P model M

false

Figure 3.2: Example of stereotype conformance operation.

3.1.3 Relationship Conformance

Description

relationship_conformance(P: Profile, M: Model): Boolean;

Every relationship (i.e. association, dependency) in model M is

required to have a corresponding relationship in pro�le P.

Speci�cation

Figure 3.3 shows how a dependency in an architectural pro�le shown on

the left-hand side is interpreted as an extended UML pro�le, shown on

the right-hand side. The latter has already been described in Figure 3.1.

Figure 3.4 shows the analogous interpretation for an association. The left-

hand side of the �gure shows two classes with stereotypes �MyClass� and

�MyOtherClass� connected to association �MyAssociation�. The right-

hand side shows the corresponding extended UML pro�le with multiplicities

a1...a2 and b1...b2 attached to the association end stereotypes.

Example

Figure 3.5 shows examples of applying relationship conformance on a simple

model. Pro�le P requires that a�client� always connects to two�proxy�

elements with an Association. Further, a dependency is allowed between

�client� and �API�. The realization relationship between �API Impl�

and �API�, shown in model M, however, is not allowed by the particular

pro�le.

29

<<metaclass>>
Class

<<metaclass>>
Dependency

1..* *

<<stereotype>>
MyClient

<<stereotype>>
MyDependency

+supplierDependency+supplier

+clientDependency+client

1..* *

<<stereotype>>
MySupplier

<<MySupplier>>
...

<<MyClient>>
...

<<MyDependency>>

{strict}

1

1

{strict}

{strict}

{strict} *

*

Figure 3.3: Interpretation of a dependency

<<MyClass>>
...

<<MyOtherClass>>
...

<<MyAssociation>>

+participant

+association 2..*

1*

1 +connection

1
a1..a2

1

1

1

1

1

a1..a2

b1..b2

b1..b2

<<stereotype>>
MyAssociation

<<metaclass>>
Association

<<metaclass>>
AssociationEnd

<<metaclass>>
Class

<<stereotype>>
MyClass1

<<stereotype>>
MyOtherClass

<<stereotype>>
...

<<stereotype>>
...

{strict}

{strict}

{strict}

{strict}

{strict}

{strict} {strict}{strict}

Figure 3.4: Interpretation of an association

Pragmatics

The relationship conformance operation can be used for ensuring that only

allowed relationships between architectural concepts are being used and that

the number of relationships between the concepts is correct.

Variants

As with stereotype conformance, the given speci�cation for relationship con-

formance is also rather strict. When necessary, it can be relaxed in a similar

manner to allow the use of unstereotyped relationships between unstereo-

typed model elements, or even between model elements with user-de�ned

stereotypes.

30

profile P

model M

<<client>>

...a client
<<API>>

...an API

<<proxy>>
...a proxy

1

2

<<client>>

Customer
<<API>>

TellerMachine

<<API Impl>>

TellerImpl
<<proxy>>

Beatrix
<<proxy>>

Kiddo

relationship
conformance false

Figure 3.5: Example of relationship conformance operation

UML Notes

Figure 3.3 is identical with the extended pro�le example given in Figure

3.1. While relationship conformance is de�ned for dependencies, associations,

and their subtypes, the same mechanism can be analogously de�ned for the

remaining UML relationships as well (e.g. generalization).

3.2 Set Operations

The set operations are based on deriving a correspondence relationship among

elements that are seen to represent the same modeling concept. Correspond-

ence is used as the basis for resolving the possible con�icts between the model

elements (e.g. inconsistent multiplicities on association ends), and for per-

forming the actual operation. Obvious correspondence criteria include the

type (metaclass) and name of the model elements, and a repository identi�er

when available. The context of a model element can be used as an addi-

tional correspondence criteria. Such context can comprise, for example, the

end elements of a relationship or a composite element owning part elements

(e.g. a class owning attributes).

The basic de�nitions o�er a starting point for applying whatever rules

and heuristics might be available for the given domain. While the corres-

pondence de�nitions can be arbitrarily complex, in practice the way humans

31

use identi�ers makes names and types of the model elements a very useful

correspondence criterion. The described approach works on static models,

and static structure models in particular. Depending on the naming scheme

used, it can be also used on instance-level structure diagrams.

3.2.1 Deriving Correspondence

Name and type based correspondence is useful when targeting UML classi�-

ers, but it is insu�cient for describing correspondence between relationships

or composite model elements. Instead of de�ning correspondence separately

for each UML metaclass of interest, it is bene�cial to construct a general cor-

respondence derivation scheme as a basis for the approach. The de�nition

exploits the MOF speci�cation [35] and assumes that the abstract syntax for

a given modeling language�typically, but not necessarily, UML�is given as

a MOF model. The main assumption is that the meta-associations present

in an abstract syntax de�ne a context for each metaclass that can be used as

a starting point for reasoning about correspondence.

The context includes the structure necessary for deriving correspondence

for a model element. For example, the context of a UML Attribute comprises

its owning Namespace and type Classifier, and the context of an Association

comprises its owning Namespace, and its AssociationEnd elements and their

participant Classifiers. To establish a speci�cation for context, some fun-

damental de�nitions are given �rst:

� A parent element connects to its child element via a metalink that

instantiates a composition meta-association between the corresponding

metaclasses (types) of the elements, the type of the parent element

being at the composite end, and the type of the child element being

at the other end. For each child element, there can exist at most one

parent element. This is guaranteed by MOF composition semantics

([35], Sec. 4.10.2).

� Model element ed is descendant of model element ea if ea is the parent

of ed, or if the parent of ed is a descendant of ea. Similarly, ea is an

ancestor of ed.

� A mandatory neighbour of a model element is connected to the element

by a metalink that instantiates a meta-association between the cor-

responding types of the elements, where the lower multiplicity bounds

on the mandatory neighbour side are greater than zero. A mandatory

child element is a mandatory neighbour of its parent element.

32

� Model element emd is a mandatory descendant of model element ea if

emd is a mandatory child of ea, or if emd is a mandatory child of a

mandatory descendant of ea.

The parent�child and ancestor�descendant dichotomies contribute to a model

namespace hierarchy. The mandatory neighbours state the context of the

model element. The primary context of a model element is a set of model

elements consisting of

1. its parent element,

2. its mandatory neighbours,

3. its mandatory descendants, and

4. the mandatory neighbours of its mandatory descendants.

The di�erence between a context de�ned by the neighbours of an element

and the primary context is that the latter constitutes the structure that is

required to exist for the model element to be properly de�ned in terms of

the abstract syntax. Following from the de�nition, a unique primary con-

text always exists. Exploiting the de�nition of context, the correspondence

criterion assumed in this thesis is name-type-context-correspondence:

Given models A and B, model elements eA belonging to A and

eB belonging to B are said to name-type-context-correspond if

they have the same metaclass, the same name, and a name-type-

context-correspondent primary context.

Two elements are uniquely corresponding, if they only correspond to each

other. In the case of several corresponding candidate elements, the default

functionality is to ignore them. When necessary, these ambiguities can be

dealt with e.g. as suggested by Egyed ([12], Sec. 4.2).

To further illustrate the apporach, Figure 3.6 shows two simple example

UML class diagrams. Both diagrams share the Contract and Client classes

and an association between them, and further Firm class specializing Client.

The diagrams are used as input for the union, intersection, and di�erence

variants later in this section. The UML metamodel instances of the class

diagrams are shown in Figure 3.7 with the non-corresponding model ele-

ments drawn with a dashed line. In addition, the �gure shows the parent,

mandatory child, and mandatory neighbour relationships between the model

elements.

33

1Contract

getClient() : Client

Client

Firm Institute

0..*Contract Client

Private Firm

name

diagram A diagram B

Figure 3.6: Example class diagrams

It is possible for a number of de�nitions for correspondence to exist. The

collection of model element properties can be arbitrary complex. However,

given the way humans use identi�ers (as names) when making speci�cations,

there is a strong reason to give the name property a special emphasis. This

is a reasonable assumption and supported by the fact that a vast majority

of the similar approaches rely on these techniques, as pointed out by Clarke

([9] pp. 58). The principles for deriving the correspondence relationship are

straigthforward and rely heavily on the sensibility of the input diagrams.

It is sometimes reasonable to relax the requirement of having identical

metaclasses, making it possible to associate model elements whose meta-

classes share a common superclass in the UML metaclass hierarchy (e.g. al-

lowing a Dependency and an Abstraction to correspond). When the primary

context de�nition makes correspondence derivation unnecessarily strict, it

can be relaxed: for example, two Operations with di�erent return types can

then be considered correspondent. Similarly, in cases where the two mod-

els are composed di�erently, it can be reasonable to allow e.g. Classifiers

to have di�erent parent elements. On the other hand, while a Stereotype

does not belong to the primary context of a UML model element, it is still

sometimes sensible to require that corresponding elements have the same

stereotypes.

The presented correspondence derivation technique has been instantiated

in the context of the UML metamodel. So far, the instantiation has been

achieved manually and, consequently, the implementation is de�ned in terms

of the UML metaclasses.

3.2.2 Union, Intersection and Di�erence

Description

union(A: Model, B: Model): Model;

34

Firm : Class

Institute : Class

: Generalization

: Generalization

: Association

: Association
End

Contract : Class

getClient :
Operation

Client : Class

isAbstract := true

: Association
End

multiplicity := {(1,1)}

: Parameter

kind = return

feature

participant

participant

connection

connection

parent

child

child

parent

type

Firm : Class

Private : Class

: Generalization

: Generalization

: Association

: Association
End

Contract : Class

name : Attribute

Client : Class

isAbstract := false

: Association
End

multiplicity := {(0,*)}

feature

participant

participant

connection

connection

parent

child

child

parent

Metamodel instance for Diagram A Metamodel instance for Diagram B

p

p

m

m

m

m

m

c

c p

p m

m

p

p

p

m

c

c

m

m

m

m

m

p parent element c mandatory child element m mandatory neighbour element

Figure 3.7: Example class diagrams as annotated UML metamodel instances

Union(A,B) contains all model elements from models A and B,

with uniquely corresponding elements merged and their meta-

association instances redirected to the merged model elements.

intersection(A: Model, B: Model): Model;

Intersection(A,B) contains only the uniquely corresponding model

elements.

difference(A: Model, B: Model): Model;

Di�erence(A,B) contains all elements in A that do not have a

corresponding element in B, and whose ancestors belong to Dif-

ference(A,B).

Speci�cation

For the MOF-level speci�cation, see the correspondence de�nition given in

the previous subsection (3.2.1).

35

1Contract

getClient() : Client

Client

Firm Institute Private

name
1Contract Client

Firm

1Contract

getClient() : Client

Client

InstituteInstitute

union(A,B) intersection(A,B)

difference(A,B) preserving_difference(A,B)

Figure 3.8: Examples of applying UML set operations

Example

Figure 3.8 shows the results of applying the union, intersection, and di�erence

set operations on the example diagrams introduced in Figure 3.6. In addition,

it shows the result of applying a di�erence invariant (preserving di�erence)

discussed below (�Variants�).

Pragmatics

The operations play a key role in the model processing approach presented in

this thesis. They o�er a way of composing and decomposing models, and thus

support the suggested model fragment and diagram based model processing.

How the con�icts among the states of corresponding model elements

(e.g. an active versus a passive class) should be interpreted depends on their

origin, i.e., how their models relate to each other. For example, if one model

is produced at a later phase of evolution, it might be considered more accur-

ate. A straigthforward approach to address such an asymmetric situation is

asymmetry: to favor one operand over another. When necessary, the details

of the selected modeling language�e.g. how should inconsistent multiplicity

ranges of corresponding association ends be merged�can be taken into ac-

count to re�ne the approach.

36

Variants

The given form of di�erence can result in an unnecessarily large number of

model elements being removed. For example, if both models A and B contain

package P , Di�erence(A,B) will result in the loss of all model elements under

P, even if they are only present in model A. A di�erence variant leaving the

context of non-corresponding model elements intact is shown in Figure 3.8.

It can be de�ned as follows:

preserving_difference(A: Model, B: Model): Model;

Preserving di�erence(A,B) contains all elements in A that do not

have a corresponding element in B, and all elements that belong

to the primary context of an element belonging to Preserving

di�erence(A,B).

The preserving di�erence variant presented here is more conservative than

the one presented in the included publication [VIII]. While the example

diagrams shown in Figures 3.6 and 3.8 are taken from [VIII] (Figures 2 and

4, respectively), the association between Contract and Client has been left

intact in Figure 3.8.

UML Notes

The operation de�nitions themselves do not guarantee that the resulting

UML diagrams conform to the UML abstract syntax or its well-formedness

rules. The former case occurs frequently in practice with diagrams that are

not complete speci�cations. For example, the model fragment implied by the

diagram in Figure 3.6 is invalid in the sense that it does not specify a type

for attribute name. An example of the latter case is a union resulting with

circular inheritance hierarchies.

The set operations are primarily suggested to be used on structure dia-

grams (i.e. class, component, deployment, and use case diagrams). In ad-

dition, they are applicable on instance-level structure diagrams (i.e. object

diagrams and the instance-level variants of component and deployment dia-

grams) if the objects have unique names. The operations can also work

on very restricted behavioral speci�cations (i.e. statechart and activity dia-

grams), but as they do not take behavioral semantics into account, the res-

ults are rarely useful in practice. With sequence and collaboration diagrams,

the approach produces a target diagram containing the source diagrams ex-

pressed as disjointed models migrated under a common namespace, unless

the input diagrams are identical. For discussion on alternative strategies for

merging such models, see included publication [VIII] (Sec. 4.1 and 4.2).

37

3.3 Transformation Operations

The generality of the UML speci�cation allows the designer to generate al-

most arbitrary models, but as a trade-o�, it is very complex and its se-

mantics are ambiguous, leaving it up to the modeler to decide how certain

structures should be described using UML. When de�ning a transformation

operation, some assumptions must be made about the characteristics of the

source and target models. Consequently, while there is a need for building

bridges between the metamodels of di�erent UML diagram types, there is

no single and obvious way of building them, so one must make assumptions

about the source and target diagrams when de�ning a particular transform-

ation operation.

There are several levels of con�dence for a transformation operation. In

the strictest form (the minimum principle) all information in the target dia-

gram is required to be implied by the source diagram. In the most relaxed

form (maximum principle) no information in the target diagram is in con�ict

with the source diagram. The derivation of the transformation rules can be

based on a push approach or a pull approach. In the former, the implica-

tion of each type of modeling concept (i.e. metaclass) of the source diagram

type in the target diagram is considered. In the latter, possible reasons for

each feature of the target diagram is sought from the source diagram. While

strong transformations are based on applying the minimum principle and the

push approach, additional heuristics can be introduced to take advantage of

the maximum principle and pull approach. The supported transformations

rely on the use of the maximum principle and the pull approach.

3.3.1 Sequence Diagram to Class Diagram Transforma-

tion

Description

sed_to_cld(D: Model): Model;

The operation takes a sequence diagram as its input operand

and produces a class diagram as a result. The structure implied

by the interaction of the sequence diagram is represented by the

modeling concepts of the class diagram.

Speci�cation

The speci�cation is adapted from the de�nitions given by Selonen, Koskimies,

and Sakkinen ([50], Sec. 5) as follows:

38

� Generate a class for each classi�er role with a distinctive class name. In-

terpret stereotypes and special constraints (e.g. {active}, [38] Sec. 3.71.2)

accordingly.

� For each message, if a relationship between the base classes of the

sending and receiving classi�er roles does not exist, generate a corres-

ponding dependency (or alternatively, an association) representing the

communication connection for the message in question.

� For each class receiving a message, if there does not already exist an

operation with the same name, generate a new operation for the class.

If there are arguments attached to the message, generate new paramet-

ers for the operation with corresponding UML basic types and type

expressions.

� For a message marked with stereotype �create�, attach the depend-

ency with the stereotype .

� For a self-message marked with stereotype �destroy�, attach the ste-

reotype to the generated operation.

� If the message is marked with a stereotype �signal� and there does

not exist a signal with the same name, generate a new signal. Associate

the corresponding class with this signal.

� If the message is marked with a stereotype�become�, the sending and

receiving classi�er roles are equated (this rule assumes that an object

cannot dynamically change its type).

� If the message has an object appearing in the sequence diagram as an

argument, add a dependency between the corresponding classes of the

sending object and argument object, if one does not already exist.

� If the message is a return message, containing only a return value of

some type, the return type of the operation of the preceding message

is concluded.

Depending on the source model, some parts of the speci�cation might be

disregarded and others included.

Example

Figure 3.9 shows a simpli�ed example of applying the sequence diagram to

the class diagram transformation (SED�!CLD) operation in the manner

39

presented in [50], including additional heuristics for generating interface hier-

archies, composition relationships, and explicit unbound multiplicities (see

�Variants� below).

Pragmatics

The sequence diagram may contain contradictory information, for example

an active and a passive object of the same class. In this case, the result of

the transformation operation is unde�ned.

Variants

In addition to the straightforward mapping of structural concepts, a set of

heuristics suggesting more elaborate constructs to the user can be introduced.

Three examples of such rules are given in [50] (pp. 8�9): simple interface

heuristics, encapsulating the generated operations into a set of interfaces

and realization relationships, broadcast heuristics, generating zero-to-many

multiplicities on association ends, and composition heuristics, that generate

composition associations. In addition, the interfaces can be arranged into an

interface hierarchy as shown in Figure 3.9 ([50], pp. 9). The heuristics aim

at using the dynamic information and call patterns contained by a sequence

diagram to generate additional structural information that might otherwise

be lost during the transformation operation.

A variant of the sequence diagram to class diagram transformation oper-

ation is introduced in the included publication [VI]: synthesis of annotated

structure diagrams. In addition to the basic transformation, the approach

synthesizes a state machine from the set of sequence diagrams and further

generates a pseudocode presentation based on the state machine that is at-

tached to the respective classes. The techniques are expected to provide help

for the designer in the early phases of the design process. The synthesized

class diagram and operation descriptions do not aim to specify the system

to be designed comprehensively; they are constructed from the incomplete

information given as sequence diagrams and thus re�ect the current state of

the design.

UML Notes

The transformation operation creates a metalevel mapping from a sequence

diagrammetamodel to a class diagrammetamodel. The nature of the metamodel

subsets depends on the assumptions made based on the domain and the con-

crete environment realizing the operations. The transformation can be seen

as a way of further completing a model, following the meta-associations of

40

main :
CApplication

piechart :
CChart

barchar :
CChart

dialog :
CDialog

okButton :
CButton

cancelButton :
CButton

input :
CDatafield

display :
CWinManager

update

update

getValue
<<create>>

CChart

update()

*

a class diagram

CApplication

<<interface>>
IWinManager1

showDialog()
hideDialog()

CButton

{active}
CWinManager

<<interface>>
IWinManager2

refresh()
setCaption()

CDatafield

CDialog

getValue()
valueUpdated()
buttonPressed()

a sequence diagram

refresh

setCaption

setCaption

refresh

<<destroy>>

<<destroy>>

<<destroy>>

valueUpdated

buttonPressed

hideDialog

showDialog

<<create>>

<<create>>

sed_to_cld

Figure 3.9: Example SED�!CLD transformation ([50], Fig. 4 and Fig. 10)

41

the metamodel. The information is "pushed" via the meta-associations and

spread further through the system, with meta-associations acting as bridges

between metamodel fragments describing di�erent types of modeling inform-

ation.

3.4 Projection Operations

In principle, projection operations can have arbitrary de�nitions provided

the source and target diagram types remain the same. Projection operations

can be based on e.g. abstraction, compression and refactoring of models. In

what follows, two example projection operation de�nitions are given. The

operations are selected based on their role in the case study presented in

Chapter 5.

3.4.1 Context Diagram Generation

Description

context_diagram_generation(A: Model): Model;

Abstract a detailed structure diagram to a context diagram show-

ing only the highest-level subsystems, interfaces, and their mutual

dependencies.

The structure diagram is expected to include packages, subsystems, classes,

interfaces, realizations1, dependencies, and operations. The resulting dia-

gram shows only the highest-level subsystems, together with the interfaces

realized by elements contained by their namespace hierarchies, and the im-

plied dependencies.

Speci�cation

To produce the target context diagram, a series of transformation steps are

performed on the source diagram as follows:

� Collect all dependencies having interfaces as their suppliers.

� For each such dependency, redirect its client side to the highest-level

subsystem containing its client, if such a subsystem exists.

� Migrate the interfaces and the subsystems to the root level.

1A realization is a Dependency with stereotype�realize� ([38], pp. 2-17).

42

S2

orginal

C1

C2

S1

projection

S1

S2

I1

I2

I1

I2

context_
diagram_

generation

Figure 3.10: Illustration of a context diagram projection operation

� Remove all model elements not connected to an interface through a

dependency. Leave subsystems intact.

Example

An example of applying the operation is given in Figure 3.10. The �gure

shows how the interfaces are raised to the top level, and how their depend-

encies are redirected to their root namespace subsystems.

Pragmatics

The operation can be used for abstracting the details of lower level structure

diagrams and only reveal the high-level subsystems, interfaces, and their

inter-relationships.

Variants

A variant of this operation further suppresses details by abstracting away

the interfaces and only showing the root namespace subsystems and their

dependencies.

UML Notes

Because UML does not de�ne a unique mapping between a diagram and

a model fragment it represents, the practical implementation must make

several assumptions about e.g. where the dependencies are located in the

UML model (under the client namespace, supplier namespace, the namespace

containing either two, etc.). In practice, such details are left for tool vendors

to decide. Similarly, issues like preserving namespace hierarchies, updating

bidirectional metalinks, and maintaining model well-formedness in partial

43

Source

S1

P

C1

C2

S2

<<consistsOf>>

<<consistsOf>>

dep

Target

S1

C1

C2

dep

P

S2

context_
diagram_

generation

Figure 3.11: Example of applying namespace migration

models become implementation nuisances, hindering the core functionality

of the operation to be de�ned.

3.4.2 Namespace Migration

Description

namespace_migration(A: Model): Model;

Recompose a model by migrating selected model elements under

a designated set of namespaces according to a given criteria.

Speci�cation

This operation can have numerous variants according to the migration cri-

teria used. This particular example uses special stereotyped (�consistsOf�)

binary dependencies between namespaces to guide the migration.

� For each dependency with stereotype�consistsOf�, migrate the sup-

plier under the client namespace.

� Remove �consistsOf� dependencies.

Example

An example of applying the operation is given in Figure 3.11. The �gure

shows how two classes under package P are migrated under new packages, S1

and S2, and the �consists of� dependencies are removed from the model.

44

Pragmatics

The operation e�ectively describes a method for re-arranging namespace hier-

archies. For example, it can be used as an alternative way of composing a

model to emphasize a di�erent concern.

UML Notes

The notes given in the previous subsection (3.4.1) also apply to this subsec-

tion.

3.5 Summary

It is not feasible to give general, yet formal de�nitions for the operations.

First, UML itself is not formally de�ned. Second, OCL has limited expression

power for manipulating metamodels and requires a �xed application model,

making it hard to reason about models and the metamodel at the same time.

To address this issue, the Object Management Group has issued a Request for

Proposal [36] for a general-purpose transformation language for MOF-based

metamodels as a part of the Model Driven Architecture movement. This

language, named QVT (for Queries-Views-Transformation), will emerge at

earliest by the end of 2005.

This is not only a technological issue, though. Finding the right abstrac-

tion level for specifying the model processing operations is not straigthfor-

ward. Regardless of the selected formalism, the generality and the degrees

of freedom of the UML speci�cation make this impractical. A one-to-one

translation schema forces the operations to be tied to a particular context,

makes them lose their generality, and clutters their de�nitions with modeling

language speci�c details.

Tool support and customizability are key goals of the presented model

processing approach, and they have been achieved. It is the belief of the

author that communicating the underlying principles and ideology should be

the key contribution of this chapter.

The conformance operations introduced in the included publications are

summarized in Table 3.1. The introduced set operations are summarized in

Table 3.2. Both operation categories allow an arbitrary set of operation de�n-

itions: conformance operations only dictate the metamodel�model relation-

ship between its source models, while the set operations rely on establishing

a correspondence relationship between the model elements representing the

same concepts. The number of di�erent transformation operation types, on

the other hand, is bound to the number of di�erent diagram types (modeling

45

Table 3.1: Summary of Conformance Operations

Operation De�nition

Stereotype con-
formance

Every stereotype must be de�ned in a stereotype de�nition
pro�le. Every classi�er must have a stereotype.

Relationship con-
formance

Every relationship (i.e., association, dependency) is re-
quired to have a corresponding relationship in a pro�le.

Multiplicity con-
formance

The number of associations each classi�er participates in
must fall in the range of the multiplicities de�ned by the
corresponding association in a pro�le. The rule follows dir-
ectly from using the relationship conformance variant intro-
duced previously (i.e., mapping the multiplicity de�nitions
a1..a2 and b1..b2 in Figure 3.4).

Interface conform-
ance

For every interface, if there exists a corresponding interface
and a (set of) realizing class(es) in a pro�le, there must also
exist a corresponding realizing class.

Link conformance Every link must have a corresponding link in a pro�le.

Concrete composi-
tion conformance

Each classi�er must be contained by a legal parent
namespace de�ned in a pro�le.

paradigms). However, the interpretation of individual operations can vary

across di�erent domains and purposes. Strong transformations are summar-

ized in Table 3.3. The descriptions given for the operations are not the only

possible ones as there might be alternative ways of de�ning them. For ex-

ample, the transformation from a statechart diagram to a class diagram could

be done using the State pattern (Gamma et al [18]). Finally, the projection

operations can have arbitrary de�nitions provided the source and target dia-

gram types remain the same. Di�erent projection operation categories are

summarized in Table 3.4.

46

Table 3.2: Summary of Set Operations

Operation Explanation

Union Merging of models.

Intersection Preserving the common parts of the model.

Di�erence Preserving only the parts of model unique to the �rst op-
erand.

Preserving Di�erence Preserving only the parts of the model unique to the �rst
operand, and their owning elements.

47

Table 3.3: Summary of Transformation Operations

Operation Explanation

SED�!CLD As de�ned in Subsection 3.3.1.

SED�!SCD The transformation can be interpreted as an algorithm for
synthesizing a minimal state machine from a set of sequence
diagrams automatically. First, a trace from the sequence
diagram is extracted from the point of view of the classi�er
role of interest. The items in the message trace are mapped
to transitions and states of a state machine. Sent messages
are regarded as primitive actions associated with states.
Each received message is mapped to a transition.

SCD�!SED The transformation generates a sequence diagram by sim-
ulating a set of statechart diagrams. Actions are messages
sent or actions performed by the object described by the
statechart diagram. Event triggers of transitions are in-
terpreted as messages received by the object. Actions are
transformed to sent messages of an interaction. This oper-
ation uses the same interpretations as the previous one.

SCD�!CLD The transformation reveals the static class structure im-
plied by a statechart diagram. Signal events occurring at
transitions and states are mapped into signals, and call
events are mapped into operations. The context of the state
machine is mapped into the classi�er.

SED�!OBD The operation e�ectively results in transforming the se-
quence diagram into a collaboration diagram, and then by
removing their interaction.

OBD�!CLD The objects and links are transformed into their respective
classes and associations, and the states of the objects are
transformed into their structural features.

48

Table 3.4: Summary of Projection Operation Categories

Category Explanation

Abstraction Abstraction of models is a process of deriving concepts at a
higher level of abstraction from concepts at a lower level of
abstraction, an example being a class diagram to compon-
ent diagram transformation. When abstraction is achieved
within a same modeling paradigm (i.e. a UML diagram
type), it can be seen as a projection operation. For ex-
ample, the context diagram generation operation presented
in this chapter is an abstraction operation.

Compression Compression of models aims at hiding details irrelevant to
the selected viewpoint. For example, inheritance hierarch-
ies, composition relationships, and classi�er relationship
chains can be collapsed. Conceptually, compressed model
elements typically reside at the same level of abstraction
than the elements that are suppressed as opposed to ab-
stracted model elements.

Refactoring With the increasing need for re-engineering software sys-
tems, mechanisms for applying refactoring patterns have
become more important.

Patterns Design and architecture patterns are a well-established
mechanism for collecting the industry best practices and
common know how. Although this bends the nature of the
projection operations, the additional modeling constructs
can be generated (semi)automatically by a projection op-
eration after the roles of the pattern have been tied to con-
crete model elements.

49

50

Chapter 4

Implementing the Model

Processing Approach

To support the model processing approach in practice, mechanisms are needed

for implementing the model processing operations, for combining the oper-

ations together, and for integrating them with existing UML CASE tools.

This chapter introduces a UML model processing platform as such a mech-

anism and addresses the implementation of individual operations. Further,

it discusses the role of the implemented operations in the context of a larger

architecting environment. The chapter summarizes the included publications

[III] and [V].

4.1 The xUMLi Model Processing Platform

xUMLi is a UML model processing platform for building small model pro-

cessing tasks, and for combining them to gain high-level functionality and

eventually complete tools (e.g. Airaksinen et al [2]). Model processing opera-

tions are combined using VISIOME (Peltonen [41], Siikarla [52]), a high-level

visual scripting language. VISIOME is discussed in more detail in the Sec-

tion 4.2. The platform has been developed by the PRACTISE research group

since 2001. Individual model processing operations are implemented as com-

ponents on top of the platform.

The platform consists of a UML specialization layer, a set of standard

components for importing and exporting models between xUMLi and other

tools, and a visual scripting language for combining user components to build

high-level scripts. The specialization layer provides a data model compliant

to a subset of the UML version 1.5 metamodel and a high-level API for UML

model processing. In general terms, xUMLi can be seen as model processing

51

XMI Rose ...

Export/Import

UML specialization layer

VISIOME scripting engine

Model processing
operations

VISIOME scripts

xUMLi

UMLi

Figure 4.1: The architecture of xUMLi

middleware. The environment is not dependent of any speci�c CASE tool,

but o�ers a plug-in interface for components that transfer models between a

tool repository and the data model. It is therefore possible to support several

di�erent CASE tools or UML model repositories. Such import/export plug-

ins have been built for IBM Rational Rose1, XMI (OMG [38] Sec. 5), and

some proprietary �le formats. Figure 4.1 shows the high-level architecture of

xUMLi.

The UML interface o�ers relatively high-level support for Python and

other COM-compliant programming languages by providing access to the

UML models through getters, setters, and OCL-based queries, aimed at al-

lowing the user to concentrate on the UML-related problem at hand on a

high conceptual level. The individual model processing operations are im-

plemented using such a programming language (e.g. Python, C++) and then

combined together with VISIOME.

A simple example of using the xUMLi interface is shown in Figure 4.2

(Siikarla, Peltonen and Selonen [53], Fig. 9). The �rst part of the example

queries for all properly de�ned stereotypes in stereotype de�nition pro�les. It

recursively collects the user-de�ned stereotypes contained by profile to col-

lection st using the find operator. The OCL expression is true for all classes

which have a dependency marked with stereotype�stereotype� and point-

ing at another class with stereotype �metaclass�, e�ectively introducing

a new user-de�ned stereotype in UML (see e.g. [38], Fig. 4�1). The second

part of the example iterates over all classes in model and checks whether they

have a valid stereotype included in st. The operation implements a variant

of the stereotype conformance operation described in Subsection 3.1.2.

1http://www.rational.com/products/rose/

52

st = profile.find(\

"element.clientDependency->exists(cd |" \

"cd.stereotype.name->includes('stereotype')" \

"and cd.supplier.stereotype.name->includes('metaclass'))")

for cls in model.find("element.metaclass->includes('Class')").ToList():

for cst in cls.Get("stereotype"):

if st.select("element.name->includes("" +cst.name+ "").Length==0:

handle class with wrong stereotype

Figure 4.2: Python implementation excerpt of stereotype conformance oper-

ation

4.2 The VISIOME Visual Scripting Mechan-

ism

VISIOME notation is a variant of the UML activity diagram notation ([38],

Sec. 3.84) with extended semantics. It emphasizes the use of OCL with a set

of elementary programming constructs. The scripts are build using activities.

Activities can be either other VISIOME scripts or executables, i.e., COM-

components2 realizing a special IVisiomeExecutable interface. The scripts

are built using objects and activities, and put together with object �ows and

control �ows.

Figure 4.3 shows an example VISIOME script, "Paint Di�erence". The

script can be used for highlighting the di�erences between a base model and

a set of reference models. The script takes two or more diagrams as its in-

put operands. Given the asymmetric nature of the described operation, the

reference input is marked with '1'. The script makes a decision, marked as a

diamond with guard conditions, based on the diagram type and converts all

input diagrams to class diagrams using suitable transformation operations.

Similarly to UML activity diagrams, decisions indicate alternative paths of

control. Synchronization is marked with a line. All concurrent branches

have to be completed before the di�erence is applied to the diagrams. The

di�erence can be constructed using set operations. The di�erences to the ori-

ginal diagram are highlighted in the resulting diagram. While the script has

a simple structure, it is suitable for several interesting software engineering

2http://www.microsoft.com/com/

53

Figure 4.3: Paint Di�erence VISIOME script

tasks with only a small variation. Other example scripts are presented in the

included publication [V].

4.3 The artDECO Architecture Validation Tool

The pro�le-based architecture model validation approach described in Sec-

tion 2.3 is realized by artDECO (e.g. Airaksinen [1]), a tool for validating

architectural models against pro�les in UML. It constitutes a set of con-

formance operations, implemented as xUMLi Python components, and do-

main speci�c VISIOME scripts describing validation con�gurations of the

conformance operations. An artDECO validation script imports the archi-

tectural pro�les and views from a CASE tool, performs a series of model

manipulations on them (using e.g. projection operations), executes a set of

conformance operations, and outputs the results from the validation in XML

format. Alternatively, the user can choose to browse the reported incidents

with an xUMLi error browser component integrated with Rational Rose. In

practice it is often more feasible to annotate the non-conforming model ele-

ments with information on the encountered problems than to return a single

54

Figure 4.4: Screenshot of an artDECO script opened in VISIOME editor

boolean value indicating whether the model was conformant to the pro�le or

not as a whole.

Figure 4.4 shows a screenshot of an artDECO con�guration opened in the

VISIOME editor (Tolvanen [57]). The script has two inputs, one for architec-

tural pro�les and one for architectural views. Both models are imported from

a selected Rational Rose repository by a xUMLi component RoseImporter.

The architectural views are �ltered by an ISADepFilter component (i.e., un-

wanted dependency types are removed) before Stereotype Conformance (Sec-

tion 3.1.2) and Relationship Conformance (Section 3.1.3) components are

executed. After both operations are completed, their results�incident data

describing the non-conforming structures�are forwarded to an Error To XML

component that produces a summary incident report.

In addition to the conformance operations, implemented as a part of the

artDECO tool, other model processing operations described in Chapter 3

have been implemented during the course of research. The �rst versions were

realized on top of TED, a Nokia proprietary UML CASE tool (Wikman [60]),

as described by Koskinen et al [28]. The operations were used e.g. in a case

study evaluating the di�erences between reverse engineering tools (Kollman

et al [26]). A subset of the operations were migrated on top of xUMLi as

described by Airaksinen et al [2]. The case study described in Chapter 5

exploits transformation operations, projection operations, and set operations

implemented on top of xUMLi. The implementation of the set operations is

described by van der Ven [58]. A case study exploiting the set operations on

comparing di�erent WSDL descriptions is presented by Lipponen et al [22].

55

4.4 Integrating the Techniques

Some of the implemented tools have been integrated with an experimental

software architecting environment [III]. The architecting environment, using

UML as the architecture modeling language, facilitates the software architec-

ture design, architecture model analysis and processing, architecture model

reconstruction and maintenance, during the entire life-cycle of a software

product-line. The environment comprises tools for architecture model valid-

ation, architecture model analysis and processing, and reverse-architecting.

It �ts the current software development process inside Nokia, and is integ-

rated with the design and documentation tools that have already been used

by Nokia software architects. The environment has been used in the ar-

chitecture design and maintenance of a main product-line of Nokia mobile

terminal products, and has also been partly applied in another product-line

as described in Chapter 5.

The implementation work has aimed at a �exible tool environment that

is customizable and adoptable for di�erent domains. For instance, the pro-

�les in�uence the model validation rules, model manipulation methods, and

reverse engineering methods. Therefore, the tools used in this environment

are designed and implemented to be customizable and modi�able, and new

tools can be integrated in the environment.

The experiences gained during the establishment, deployment, and ap-

plication of the environment have demonstrated that methods used for ar-

chitecture-centric software development and maintenance are heavily in�u-

enced by the particular context they are applied to. It is necessary that the

tools belonging to the environment are recon�gurable and modi�able so that

they could be conveniently adapted to a new domain. To be able to support

software development and maintenance tasks in di�erent domains, it should

also be easy to integrate new model manipulation and validation tools to the

environment.

4.5 Summary

The purpose of this thesis is to describe the foundations of the model pro-

cessing approach. Consequently, the underlying principles of the individual

model processing operations are more important than their exact de�nitions.

While they aim to be precise enough, the given de�nitions are not executable

per se. They have been implemented on top of the xUMLi platform, integ-

rated with a concrete CASE tool, and during implementation �tted into the

56

context they are applied in. The real-life case studies act as a proof of the

concept for the approach.

57

58

Chapter 5

Case Study and Evaluation

We took four cardboard tubes�the kind of tube you'd �nd in a regular

brand of household toilet tissue�and then proceeded to place them

on the �oor, making four columns equidistantly, thus. We wanted to

test if these cardboard tubes would support the average body weight

of a human man.

. . . no.

� Professor Denzil Dexter, University of Southern California1

This chapter describes a case study utilizing the model processing approach in

practice in the larger context of maintaining a large mobile terminal product

platform. The chapter outlines the problem domain, presents the suggested

solution, and discusses the obtained results. The presentation is extended

from the included publication [II].

5.1 Context of the Study

Software systems, and telecommunication systems in particular, are typic-

ally characterized by frequent introduction of new requirements and change

of existing features, forcing the products and product platforms to be under

constant development. The evolution of a platform is a�ected by a signi�cant

time-to-market pressure and rapid release cycles. Consequently, the archi-

tecture of the platform is inevitably decaying over time, making it harder to

comprehend and maintain by the designers, thus leading to increased main-

tenance costs and reduced quality of the products. To complicate issues fur-

ther, the architecture models produced during forward engineering are rarely

1a character played by John Thompson on the BBC's �Fast Show�

59

Domain

detailed

guide

abstract

non-
UML

Architecture
Profiles

improves

guide

Architecture
Views

generates

guide Model
Analysis
Process

Implementation
Model

Reverse
Engineering

Process guide

conform to

are mapped to

generates

improves improves

guides

UML

Figure 5.1: A general maintenance process

kept synchronized with the actual implementation model (i.e. source code).

Both techniques and tools must be provided to ensure that the product plat-

form architecture includes a set of desired properties, while lacking undesired

ones.

To address the abovementioned problems, a UML-based reverse engin-

eering and model analysis approach for software architecture maintenance

is introduced. The overall process consists of two subprocesses: a reverse

engineering process (RE-process) and a model analysis process (MA-process)

[II]. The former is used for generating a high-level architecture model de-

scribing the selected platform release, while the latter is used for analyzing

the model and giving feedback for the design of the next platform version.

The maintenance process is illustrated in Figure 5.1. The RE-process

combines a traditional bottom-up reverse engineering approach with a top-

down approach relying on the domain knowledge captured by the platform

architectural pro�les. The pro�les describe the vocabulary of the domain and

how the model should be composed, and guide the RE-process to reach the

desired goal. The architectural views and pro�les are analyzed by the MA-

process, together with the possibly existing reference architecture models,

like forward engineering models and models of previous platform versions,

and other existing information. The results achieved while applying the MA-

process are re�ected back to the platform architecture and used for tuning

the RE-process and MA-process further.

The case study presented in this chapter instantiatiates the maintenance

approach in the context of a real-life software system and exploits the model

processing operations to build tools for analyzing the target system. The

case study has two main objectives; First, it aims at pro�le-based validation

of architectural concerns, that is, analyzing individual product platform ar-

chitecture models to ascertain if they are in agreement with the conventions,

60

restrictions, and rules de�ned by the system architects. Second, it aims at

the comparison of architecture models, that is, comparing the architecture

models of di�erent platform releases to monitor the evolution of the system.

5.2 The Target System

The target system of the case study is a large-scale mobile terminal product

platform of Nokia Mobile Phones, hereafter referred to as the ISA platform.

The ISA platform has signi�cant �nancial value through the various product

lines relying on its services. The platform is constantly developed and main-

tained, and new releases are produced regularly.

The maintenance process, instantiated in the ISA context, is shown in

Figure 5.2. As the forward engineering architecture model of the ISA plat-

form is only referential in nature, the actual design decisions and rationale

laying in the product itself, the source code (implementation model) of an

ISA release must transformed by the RE-process to a reconstructed architec-

ture model (the R-model).

While the reverse engineering subprocess, initially reported by Riva [46],

is far from being trivial, it is outside the scope of this thesis. The starting

point for the case study is an existing ISA platform architecture model given

in UML.

5.3 The Target Architecture Model

The ISA R-model produced during the RE-process has a relatively simple

structure. The main architecture model consists of high-level subsystems,

subpackages, and components. The components can be servers, applica-

tions, delegates, or common applications, and they can connect to each other

through interfaces using messages or invocations. In addition, the ISA archi-

tecture models can contain information about e.g. the design teams respons-

ible for implementing the components. The size of the R-model is roughly

150 subsystems, 1000 components, and 15000 inter-component dependencies.

Figure 5.3 shows the overall pro�le hierarchy for the ISA architectural

pro�les, specialized from the general concept introduced in Section 2.3. The

Conceptual Profile de�nes the fundamental architectural concepts for the

ISA domain and the basic architecture style that should be followed by the

design. The Package Structure View Profile imports the concepts of the

Conceptual Profile and adds information on how the architecture model

itself is organized into namespace hierarchies. The Layer View Profile im-

61

Model Analysis
Process

Reverse
Engineering

Process

R-model n
(Reconstructed

Architecture Model
of Release n)

R-model n-1 or R-
model of any

earlier release

Implementation
Model of Release

n-1

Implementation
Model of Release

n

Implementation
Model of Release

n+1

Design and
Implementation

Process

Platform
Architectural Profiles

F-model (Forward
Engineered Platform
Architecture Model)

Analysis
Results

feedback

abstract

detailed

Platform

Product Releases

Product Line Life-time

UML

non-UML

Figure 5.2: The ISA maintenance process ([II], Fig. 10)

ports both pro�les and describes an additional architectural style the R-

model should follow.

As the synthesis of the ISA R-model during the RE-process is guided

by the Package Structure View Profile pro�le, it is obvious that the archi-

tectural concepts and model composition are known to be correct a priori.

Consequently, the pro�le is not discussed further. For more details, see in-

cluded publication [II].

Figure 5.4 shows an example of a stereotype de�nition part of the ISA

Conceptual Profile. The pro�le de�nes a set of concepts relevant to the ar-

chitecture style used. Stereotypes�Server�,�Application�,�Delegate�,

and �CommonApp� represent logical components in the architecture, while

�message� and�invocation� represent logical dependencies between these

concepts. Figure 5.5 shows a subset of the constraint de�nition part for the

62

Conceptual Profile

Package Structure
View Profile

Layer View Profile

<<import>> <<import>>

<<import>>

Figure 5.3: ISA R-model Pro�le Hierarchy

<<metaclass>>

GeneralizableElement

Conceptual Profile::Stereotype Definitions

<<stereotype>>
Server

<<stereotype>>
Application

<<stereotype>>
Delegate

<<stereotype>>
CommonApp

<<metaclass>>
Class

<<stereotype>>

Logical Component

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

Logical Dependency

<<metaclass>>
Depedency

<<stereotype>>
message

<<stereotype>>
invocation

<<stereotype>>

<<stereotype>>

<<stereotype>>

Figure 5.4: ISA conceptual pro�le stereotype de�nition example

Conceptual Profile. The pro�le de�nes the allowed relationships between

the architectural concepts and the types of these relationships. The UML

well-formedness rules require classes to have unique names. The adopted

naming convention is to begin with the name of a class with three dots (. . .)

followed by the name of its stereotype. The names themselves have no se-

mantic meaning. The particular example pro�le de�nes a set of interfaces,

their legal realizers, and the components depending on these interfaces. For

example, �Server� can realize �Server IF�, and �Application� can

connect to �Server IF� with a �message� dependency. The pro�le e�ect-

ively introduces a client�server architecture style.

The RE-process utilizes both the Conceptual Profile and the Package

Structure View Profile while building the R-model. The latter also de�nes

the primary decomposition (e.g. Tarr et al [56]) of the model. In contrast, the

Layer View Profile describes an alternative, parallel model decomposition.

63

<<Application>>

...An Application

Conceptual Profile::Constraint Definitions 1

<<message>>

<<Delegate IF>>

...A Delegate IF

<<Server>>

...Another Server
<<CommonApp>>

...Another Common App

<<Service IF>>

...A Server Interface

<<Server>>

...A Server

<<Delegate>>

...A Delegate App
<<Service IF>>

...A CommonApp IF

<<CommonApp>>

...A Common App

<<message>>

<<message>>

<<message>>

<<invocation>> <<invocation>>

<<message>>

<<message>>

Figure 5.5: ISA conceptual pro�le constraint de�nition example

As the RE-process does not take this pro�le into account when constructing

the architecture model, it is discussed later in this chapter.

5.4 Pro�le-Based Validation of Architectural Con-

cerns

This section discusses the pro�le-based validation of the ISA architecture

model. It sets the goals, describes the applied method, presents the achieved

results and analyzes them. This section is based on the included publication

[II].

5.4.1 Goals and Applied Method

The ISA pro�les describe the UML interpretation for the architectural con-

cerns. The goal is to ensure that the following architectural concerns are

met:

1. Only the architectural concepts allowed by the domain should be used.

2. Only the allowed relationships between the architectural concepts should

be used and that the number of relationships between architectural con-

cepts should be correct.

64

architecture
profiles

importer

architecture
views

importer

ISA filter

stereotype_
conformance

relationship_
conformance

XML filter

results

Figure 5.6: A script for ISA basic architecture validation

3. The architecture model should conform to a three-layer architecture

style.

The conformance checking is divided into two parts: basic conformance

checking and checking of conformance to the layered architecture style. While

the former is established using the conformance operations directly, the latter

requires some restructuring of the architecture model using suitable projec-

tion operations.

Basic conformance checking

Figure 5.6 shows a VISIOME script describing the basic architecture valida-

tion task. The stereotype conformance operation (stereotype_conformance)

is used for validating that only the allowed architectural concepts are used

and that the classi�ers have proper stereotypes. The relationship conform-

ance operation (relationship_conformance) is used for validating that only

allowed relationships between architectural concepts are used. The script

further shows two input interfaces for architecture pro�les and architecture

views, two importers for CASE tools (importer), a �ltering component (ISA

filter) for �ltering out uninteresting information, a synchronization bar be-

fore and after the set of validation components, and �nally an XML �lter

(XML filter) for �ltering the results.

Conformance to layered architecture style

In addition to the selected physical system decomposition, the ISA platform

architecture should conform to a layered architecture style. The three layers

are de�ned in the left-hand side of Figure 5.7, introducing �Arch Layer�

and its three subtypes: �UI&App Layer�, �Service&Resource Layer�, and

65

<<UI&App Layer>>

...A UI&App Layer

<<Service&Resource Layer>>

...A Service&Resource Layer

Layering Profile::Constraints

1..*

1

Layering Profile::Stereotype Definitions

<<stereotype>>
UI&App Layer

<<metaclass>>
Subsystem

<<stereotype>>

Arch Layer <<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

Service&Resource
Layer

<<stereotype>>

HW Control Layer

<<Arch Layer>>

...An Arch Layer

<<Sub Package>>

...A Sub Package <<HW Control Layer>>

...A HW Control Layer

<<Logical Dependency>>

<<invocation>>

<<stereotype>>

Figure 5.7: ISA layering pro�le

�HW Control Layer�. The right-hand side of the �gure shows the level

of composition granularity for the architecture layers: �Arch Layer� must

be composed of �Sub Package� subsystems. The relationship between the

three layers is given in the rightmost structure, e�ectively introducing a

three-layer architecture style. The top layer (�UI&App Layer�) can only

communicate with the middle layer (�Service&Resource Layer�), which in

turn can only communicate with the bottom layer (�HW Control Layer�).

Lower-level layers are not aware of upper-level layers, and the top layer is

not allowed to communicate directly with the bottom layer by bypassing the

middle layer.

To validate that the architecture model conforms to the speci�ed layered

architecture style, the model is recomposed according to the rules speci�ed

by the pro�le and instantiation criteria. An example of such criterion is

shown in Figure 5.8. The diagram ties two �Sub Package� subsystems to

ISA Service&Resource Layer.

Figure 5.9 shows a VISIOME script describing the layered architecture

validation task. The architecture pro�les, architecture views, and the instan-

tiation model are given as script inputs and imported by importer compon-

ents. After the instantiation model is merged with the architecture models

(union), it is restructured using namespace_migration and context_diagram_-

generation components, implementing the projection operations presented in

Section 3.4. The logical recomposition is used for restructuring the architec-

ture model to re�ect the division into the architecture layers. The resulting

model shows the layers and their inter-relationships. This model is then

validated against the constraint pro�le using the relationship conformance

66

ISA Layers Instantiation::S&R Layer

<<consists of>>

<<Service&Resource Layer>>
ISA Service&Resource Layer

<<Sub Package>>
ISA Core Services

<<Sub Package>>
ISA Protocol Services

<<consists of>>

Figure 5.8: An example of recomposition instantiation criteria

imported
architecture

profiles

imported and
filtered

architecture
views

relationship_
conformace

unfiltered
results

imported
instantiation

model context_
diagram_

generation

namespace_
migrationunion

Figure 5.9: A script for ISA layered architecture validation

operation (relationship_conformance). The results are �nally �ltered using

the XML �lter component.

Summary

The main focus when working with the R-model is the checking of rela-

tionships and conformance to the layered architecture style. With manually

composed F-models, the other conformance checks are also of interest�see

Table 5.1 for additional concerns. The table summmarizes the architectural

concerns, their UML interpretations, and the applied model processing op-

erations.

67

Table 5.1: Architectural concerns, UML interpretations and applied model

processing operations

Architectural concern UML interpretation Applied MPO's

Validate that only the
architectural concepts al-
lowed by the domain are
being used.

Check that all classes,
packages, and relation-
ships (dependencies, real-
izations, etc.) have their
stereotypes de�ned in the
stereotype de�nition pro-
�les. Verify that each
Classi�er has a designated
stereotype.

Use stereotype conform-
ance rule with approriate
pro�les.

Validate that only allowed
relationships between the
architectural concepts are
being used and that the
number of relationships
between architectural con-
cepts is correct.

Check that all used de-
pendencies have been
de�ned in the constraint
pro�les.

Use relationship conform-
ance rule with appropriate
pro�les.

Validate that the inter-
faces have correct realizers
in the design.

Check that the realizer re-
lationships connecting to
the interfaces have proper
clients as de�ned in the
constraint pro�les.

Use the interface conform-
ance rule together with
the relationship conform-
ance rule with appropriate
pro�les.

Validate that the phys-
ical composition hierarchy
of the architecture con-
forms to the domain-
speci�c conventions.

Check that the namespace
containment hierarchy fol-
lows the parent�child re-
lationships de�ned in the
packaging pro�les.

Use the concrete com-
position conformance rule
with appropriate pro�les.

Validate that the system
conforms to a layered ar-
chitecture style.

Check that all the depend-
encies between classes be-
longing to layers de�ned
in the layering pro�les
are directed from a higher
level layer to a lower level
layer.

Recompose the model and
compress the relationships
using a logical composi-
tion projection and rela-
tionship conformance rule
with appropriate pro�les.

68

5.4.2 Analysis of the Results

The reported incidents for the �rst ISA R-model validated (03w39) were ini-

tially reported in the included publication [II]. They included approximately

300 stereotype violations, 5000 relationship violations, and 650 layering viol-

ations.

The results were presented to, discussed with, and analyzed by, the chief

architects responsible for managing the ISA archictecture model. Obviously,

many of the violations originated from �quick and dirty� solutions under the

time-to-market pressure. Investigation of the results revealed the following

problems ([II], Sec. 6):

1. Evolving and incomplete pro�les. When new stereotypes were intro-

duced, the constraints of the dependencies regarding them could not

be completely speci�ed, and some of them were even left open. The

dependencies that were not covered by the pro�les were reported illegal.

2. Components having inappropriate stereotypes. Some components played

a di�erent role than was originally planned. This discovery showed that

the rules used by the RE-process for mapping the concepts should be

improved, and that the design and implementation of these components

should be reviewed.

3. Sharing of code by the same development team. Many illegal depend-

encies occurred between components implemented by the same team

or several closely co-operating groups working on the same feature or

feature set. As an example, a component can share a function from an-

other component with a function call, which can easily create an illegal

dependency regarding the design principles.

4. Dependencies introduced due to performance and other non-functional

requirements. Some of the dependencies short-cutting across layers

involved top-layer components directly invoking the functions of the

bottom layer components. These dependencies fall into a special cat-

egory of dependencies allowed for etc. performance reasons. However,

they should be closely monitored and controlled within a very limited

scale.

5. Inappropriate function allocation. Investigation showed that several

components controlling global data had been placed in the top layer,

and several components on the middle layer depended on them. Further

analysis showed that just a few components were causing a majority of

all the reported incidents.

69

Table 5.2: Results of architecture validation

ISA 04w07 ISA 04w21 ISA 04w35

Subsystems 201 230 235
Components 1165 789 816
Relationships 9141 9892 10246
Stereotype violations 42 4 3
Total relationship violations 2343 2170 2081
Client-server relationship violations 306 212 241
Total layer violations 447 582 623
Layer violations (client-server) 132 121 99

Table 5.2 summarizes the architecture validation results obtained while run-

ning the maintenance process on three more recent ISA platform releases.

After each run, the results were analyzed and both the process and the

platform were modi�ed accordingly. The number of incidents caused by the

inadequacies of the maintenance process itself has been signi�cantly reduced.

Special attention has been paid on the layering violations. While the �gures

are anecdotal by nature, they suggest that after a few iterations the number

of stereotype violations has decreased and the number of total relationship

violations has also declined. Among the total relationship violations the

number of client�server relationships (�rst-class dependency of the system)

violations has gone down and stabilized, and the number of illegal cross-layer

client�server dependencies has steadily decreased.

5.5 Comparison of Architecture Models

This section discusses the comparison of the architecture models of di�erent

ISA releases. It also presents an example of slicing the architecture model

based on the behavioral information gained during execution of high-level use

cases. It sets the goals, describes the applied method, presents the achieved

results and analyzes them.

5.5.1 Goals and Applied Method

The goals for comparing architecture models are as follows:

1. Gain a better understanding of the evolution of the platform by ob-

serving the changes in the ISA platform architecture between di�erent

releases.

70

Architecture
model A

importer

Architecture
model B

importer

ISA filter

XML filter
results in XMI

1
union

1
intersection

1
difference

ISA filter

1
difference

1
highlight

highlighted
model

exporter

Figure 5.10: A script for ISA architecture comparison

2. Gain a better understanding of the e�ects of changes in user require-

ments to the architecure subset involved in executing high-level use

cases.

Comparison of di�erent releases

The architecture models are used as input operands for union, intersection,

and di�erence set operations. The resulting commonalities and di�erences

are reported using XML and visualized as a symmetric di�erence of the

models. Particular attention is placed on the addition, removal, migration,

and changes of architectural elements. Figure 5.10 shows a VISIOME script

describing implementation of the comparison task. The script shows the

importing and �ltering of two architecture models. The models are then be-

ing compared against each other using union, intersection, and difference

components. The commonalities and di�erences are highlighted against the

merged model (highlight), exported to a CASE tool (exporter), and repor-

ted using XML.

Comparison of architecture model and execution traces

The set of execution traces is gathered from an actual mobile terminal device

running instrumented software built on top of the ISA platform. A series of

high-level use cases were performed on the device, and the resulting traces

were produced during the RE-process. The abstracted component-to-component

communication traces were mapped to UML interaction diagrams.

To compare the structure implied by the gathered execution traces to

the architecture model, the sequence diagrams are transformed into class

diagrams and merged using the union set operation. The resulting structure

model is then used as a slicing criterion for the ISA R-model architecture.

71

Architecture
model

importer

Execution
trace

importer

sed_to_cld

XML filter
results

1
union

1
intersection

1
difference

ISA filter

1
difference

1
highlight

highlighted
model

exporter

Figure 5.11: A script for slicing ISA architecture against traces

By using the intersection and di�erence set operations, the commonalities

and di�erences between the models are compared. The results are reported

using XML and visualized as a symmetric di�erence of the models.

Figure 5.11 shows a VISIOME script describing implementation of the

architecture slicing task. Apart from transforming the execution trace into

a class diagram using sed_to_cld component, the script has the same struc-

ture as the previous script in Figure 5.10. They both implement the model

comparison task �rst described in Figure 2.7.

Summary

The architectural concerns, their UML interpretations, and the applied model

processing operations are summarized in Table 5.3.

5.5.2 Analysis of the Results

The results of comparing three ISA release R-models are presented in Table

5.4. The table shows number of the common, added, and removed elements

between two pairs of ISA R-model releases, and it also states the number

of changed and migrated elements. With relationships, the presented �gure

includes the relationships between common components and the �gure in

paranthesis is the total number of added or removed relationships. Particular

attention is placed on the following issues:

1. Added and removed subsystems and components. In general, addition

and removal of elements represent evolution of the target software sys-

tem. In the context of the ISA maintenance process, however, the

large number of added and removed elements re�ects changes in the

72

Table 5.3: Architectural concerns, UML interpretations and model processing

operations for architecture model comparison

Architectural concern UML interpretation Applied MPO's

Compare the R-model
against the R-model of
the previous ISA release.

Compare the class dia-
grams and visualize their
commonalities and di�er-
ences.

Compose a symmetric dif-
ference by highlighting the
di�erences and intersec-
tion against the reference
model.

Compare a reference ar-
chitecture model against
the parts involved in
executing individual use
cases to detect whether
the violate the former.

Transform the trace, rep-
resented as a set of se-
quence diagrams, into a
class diagram and slice
the original architecture
model against it.

Use SED�!CLD, and
highlight the intersection
against the original class
diagram.

RE-process: the parts of the platform selected for architecture recon-

struction and changes in the pro�les guiding the process. Nevertheless,

the set of added and removed elements can also represent feature re-

con�guration. After observing the added components and subsystems,

such features as enhanced language support and energy management

services were detected.

2. Added and removed relationships. As the relationship correspondence

is de�ned through their end elements, the focus is placed on the added

and removed relationships between common components. While the

con�guration of included components varies, this restricted set of re-

lationships gives the system architects the opportunity to monitor the

changes in the component dependencies.

3. Migrated subsystems and components. In general, migrated subsystems

and components represent re-engineering performed on the platform

architecture for e.g. the purpose of achieving a better separation of

concerns. In the context of the ISA maintenance process, migration can

also result from the changes in the RE-process. The detected changes

were related to re�ning the component responsibilities by migrating

components to dedicated subsystems.

4. Changed subsystems and components. In general, the changes in the

model elements re�ect potential con�icts between their properties that

should be reconciled. In the context of the ISA architecture models,

73

Table 5.4: Results of model comparison

Subsystems Components Relationships

j04w21 \ 04w07j (common) 200 668 7191
j04w21 n 04w07j (added) 30 121 805 (2701)
j04w07 n 04w21j (removed) 1 497 343 (1950)
Changed 0 28 N/A
Migrated 0 5 N/A

j04w35 \ 04w21j (common) 219 752 9019
j04w35 n 04w21j (added) 16 64 493 (1227)
j04w21 n 04w35j (removed) 12 34 290 (873)
Changed 0 0 N/A
Migrated 0 0 N/A

Table 5.5: Summary of trace based architecture slicing

Components Relationships

j2003w39 \ Phone startupj 46 48
jPhone startup n 2003w39j 18 108

the changes are de�ned in terms of changed stereotypes. Such changes

typically resulted from the restructuring of the platform architecture

through improvements on the pro�les and the RE-process.

The comparison of architecture model and execution traces was performed

on three execution scenarios, one of which is discussed here in more detail.

The selected traces describe the activities involved when starting up a mobile

terminal device. The characteristics of the subsystem slice are shown in Table

5.5.

The results revealed that over one quarter of the components taking part

in the execution trace were not present in the actual architecture model.

Most of these components were not mapped due to incomplete mapping

tables during abstraction and mapping procedures involved in producing the

high-level execution scenarios from recorded low-level activities. However,

there still were �ve mapped components not present in the R-model.

Of the 100 non-correspondent relationships, around 30 involved an un-

mapped component as a client or a supplier and 20 an abovementioned com-

pletely mapped but unpresent components. The rest of the dependencies

represented, however, communication channels not present in the architec-

ture model itself. The main reason for this was concluded by the Nokia

architects to be that the traces did not take into account method invocations

74

and interfaces. The obtained results were not as comprehensive or useful as

with the pro�le-based architecture validation or model comparison between

di�erent releases. However, they do suggest that the approach has potential

for helping to further increase model comprehension.

5.6 Summary

To summarize, the goals of the case study were achieved using the model

processing approach. It was shown that model analysis subprocess of the

maintenance process can be established using a set of model processing oper-

ations. More importantly, the tools to support the approach were built and

tried out in real-life architecture models. The pro�le-based validation of plat-

form architecture and the comparison of the architectures of two platform

releases were both found to be useful. According to the feedback gained

from the Nokia architects involved, the results obtained by the tools were

found to be signi�cant for the further development of the product platform.

Most notably, the environment was set up and used also on site by the ar-

chitects themselves. The anecdotal evidence gathered during the case study

suggested that the tasks helped the software architects to pinpoint the po-

tential problem areas of the target architecture model and to act upon them

accordingly, as well as tuning the pro�les and RE-process further.

The experience gained during the establishement, deployment, and ap-

plication of the environment demonstrates that methods used for architecture-

centric software development and maintenance are heavily in�uenced by the

particular context they are applied to. Therefore, it is necessary that the

tools belonging to the environment are recon�gurable and modi�able so that

they can be conveniently adapted to a new domain. The model processing

approach with a domain-independent set of operations was found to be a

feasible solution for achieving this degree of customizability.

75

76

Chapter 6

Related Research

Model transformations in the general sense have been a long-term research

topic. However, the research has mainly focused on individual model trans-

formations rather than on providing a complete framework, and typically

downplayed the importance of diagrams and compliance to the selected mod-

eling language. Perhaps the closest to the presented approach comes the

research carried out in the area of academic UML CASE tool suites, like

FUJABA1 (see e.g. Burmester et al [7] and Köhler et al [25]), and SMW2

(Porres [43]) and the CORAL3 modeling framework built on top of SMW

(see e.g. Alanen and Porres [3]). In what follows, some related research on

di�erent model processing categories is presented.

Conformance operations. UML has been widely used for designing and

describing software models. However, e�ective approaches and tool support

for UML-based architecture modeling has been lacking, as pointed out by

Medvidovic et al [30]. UML pro�les have mainly been used for introducing

domain speci�c concepts into UML (e.g. EJB pro�le by OMG [40]) and for

introducing the concepts of architecture description languages into UML, as

presented by Zarras et al [62], and Hudaib and Montangero [19]. An example

of an alternative approach that modi�es the UML metamodel is illustrated

by Kandé and Strohmeier [23]. More in line with the work presented in this

thesis, Egyed and Medvidovic [14] discuss mapping ADL speci�cations to

UML models using a view integration process. They also de�ne conformance

and consistency relationships, but between UML models, not between pro-

�les and views. In contrast, the approach de�ned in this thesis uses a pro�le

hierarchy and a set of validation rules to establish a language for de�ning

1http://www.fujaba.de
2http://mde.abo.�/tools/SMW/
3http://mde.abo.�/tools/Coral/

77

domain speci�c architecture conventions. The approach focuses on giving

support for con�gurable validation processes that can be customized to sup-

port the constraints and conventions of a given product line or domain. In

addition, it relies solely on UML.

Transformation operations. Individual transformation operations have

been studied by various researchers. Synthesis of statechart diagrams from

collaboration diagrams are discussed by Schönberger et al [49] and Khriss et

al [24]. A method for automatic generation of UML statecharts from sequence

diagrams is introduced by Whittle and Schumann [59]. Moreover, the syn-

thesis of statechart diagrams from trace diagrams is presented by Koskimies

et al [27] and Systä [55] The synthesis of class diagrams from object dia-

grams is given by Engels et al [15]. Transforming scenarios to static model

information is discussed by Egyed [11] and Nørmark [32]. Biermann and

Krisnashwamy present the synthesis of programs from their traces [4], suited

for pseudocode generation. The generation of code from state machines is

a well-known technique, and exploited in many tools, e.g. Rhapsody4. Of

existing commercial UML CASE tools, IBM Rational Rose is also able to

perform transformations between sequence and collaboration diagrams. All

these sources go into detail on specifying individual transformation opera-

tions, whereas the work presented in this thesis aims at identifying, categoriz-

ing, and bringing together the operations to form a comprehensive framework

of transformations. In addition to the abovementioned operations, this work

aims at completing the set of operations by also addressing the supported

and weak tranformations.

Set operations. Techniques similar to the UML set operations presen-

ted in this thesis have been described by Ohst et al [33], and by Porres and

Alanen [44]. The former discuss visualizing the di�erences between two UML

diagram versions, while the latter formalize how to calculate the union and

di�erence of UML models. However, both assume that there exists unique

repository identi�ers and that the models result from a common ancestor.

The set operations can also be seen as a composition and decomposition

mechanism for model fragments, each representing a single aspect or con-

cern. Such mechanism is assumed in e.g. Subject-Oriented Design, as poin-

ted out by Clarke et al [10], and described in the Theme/UML approach
5. IBM Rational XDE6 provides most support for merging UML models,

4http://www.ilogix.com/rhapsody/rhapsody.cfm/
5http://www.dsg.cs.tcd.ie/index.php?category_id=355
6http://www-306.ibm.com/software/awdtools/developer/plus/

78

but its functionality for deriving the correspondence relationship between

model elements is proprietary, preventing the user from a�ecting it. Simil-

arly, IBM Rational Rose has a model integrator tool for model di�erencing

and merging. The set operations have been successfully used for comparing

the reverse engineering capabilities of di�erent UML CASE tools (Kollman

et al [26]) and for comparing Web service descriptions (Jiang et al [22]).

Projection operations. Examples of compression operations are presen-

ted e.g. by Dósa Rácz and Koskimies [45], and by Egyed and Kruchten [13].

Refactoring operations are natural candidates for projection operations. A

good introduction to refactoring and refactoring patterns books is presented

by Fowler [17]. Design and architecture patterns (e.g. Gamma et al [18],

Buschmann et al [8]) are a well-established mechanism for collecting the in-

dustry best practices and common know how.

General model processing tools. In general, several CASE tools sup-

port model synthesis, checking, and merging to some degree. From a model

checking perspective, a transformation operation de�nes the information that

must be shared by consistent diagrams. Bodeveix et al [5] introduce a tool

called NEPTUNE for checking the consistency of di�erent UML models,

where the consistency criterion is de�ned in terms of (extended) OCL ([38]

Sect. 6). For example, to check that a class diagram is consistent with a

sequence diagram, an OCL expression, which applies the same principles as

our transformation operation to infer possible con�icts, can be given. Hence

NEPTUNE assumes the additional speci�cation of consistency rules whereas

we rely only on the information included in the UML model itself. Prosa7

supports interactive checking between UML diagrams, and contains a model

analyzer, and simulation tools. ILogix Rhapsody provides the designer with

the possibility of observing the execution of an instrumented system via an-

imation of UML models.

Many current UML CASE tools, both commercial (e.g. Rational Rose,

Together8, Poseidon9) and non-commercial (e.g. ArgoUML10) o�er extensib-

ility and interoperability capabilities, for example, by providing a proprietary

API for model repository access, by introducing a scripting language, or by

providing libraries for tool developers. However, these CASE tool dependent

solutions are not generally well-suited for performing a chain of transactions

7http://www.prosa.�
8http://www.borland.com/together/designer/
9http://www.gentleware.com
10http://argouml.tigris.org

79

or queries on the models. One of the main goals of xUMLi is to support

the combining of small model operations to achieve high-level functionality,

customizable for a given process, domain, or a platform.

Of the existing UML model processing platforms, the UML all pur-

pose transformer (UMLAUT)11, the OCL4Java library of the Kent Modeling

Framework (KMF)12, and the FUJABA, SMW, and Coral tools come close

to our approach. In comparison, xUMLi supports COM automation and is

thus not restricted to any particular programming language, allowing the

development of practically any kind of components (e.g. user interaction,

connection to an external tool). In addition, it involves a dedicated OCL

interpreter for querying the models. The platform does not involve a CASE

tool itself, but is intended to be integrated with arbitrary CASE tools.

11http://www.irisa.fr/UMLAUT/
12http://www.cs.kent.ac.uk/projects/kmf/

80

Chapter 7

Introduction to the Included

Publications

Let me explain it to you. Our work is like this donut. Sure, it's all �u�,

has no nutritional value and there's a big gaping hole in the middle...

But, if you sugar coat it, and add colorful little sprinkles to it, people

will eat it up.

� Mike Slackenerny in �Piled Higher and Deeper�

This thesis comprises the introduction part and the eight included publica-

tions. In the following, the included publications are described in more detail

with the emphasis on the author's contributions on them.

In paper [I], the author jointly contributed to the discussion on how

transformation operations can be de�ned between UML diagrams of dif-

ferent types, what kinds of general approaches for de�ning the transform-

ations exist, and how the di�erent transformation operations can be categor-

ized. Further, the author's contributions include de�ning the most interest-

ing transformation operations in detail and providing the discussion on the

relationship among the UML metamodel and diagrams while de�ning the

operations.

Paper [II] discusses the how the conformance operations and the overall

model processing operations framework has been applied when building a

general architecture model maintenance process, targeting a real-life product

platform architecture model for an embedded terminal system product. The

paper discusses the results obtained using the operations and how they are

interpreted in the context of the case study itself. It acts as a basis for

the main evaluation of the approach described in this thesis. The author's

contributions include deriving the general maintenance process, participat-

81

ing in de�ning the architectural pro�les for the particular case study, and

constructing the model analysis process. Further, the author designed and

conducted the architecture validation and comparison tasks.

Paper [III] describes the integrated enviroment facilitating the architec-

ture design, reconstruction, and maintenance for targeted software product

lines. From the point of view of this thesis, it describes how the model

processing operation framework and its implementation has been integrated

into the larger context of a software architecting environment and places

the approaches into a larger context. The author's contributions include de-

scribing the model analysis and processing toolset, and jointly describing the

application of the framework.

Paper [IV] discusses techniques for extending the UML pro�le mechan-

ism for expressing domain-speci�c architectural constraints and conventions.

The paper presents a general schema for arranging architectural pro�les and

introduces a set of conformance operations that de�ne how the pro�les are

interpreted, constituting a pro�le de�nition language for validating archi-

tectural views against pro�les. Furthermore, the paper presents a concrete

tool implementation together with an initial case study for assessing the

feasibility of the approach. The author's contributions include de�ning the

architectural conformance rules, designing the architecture validation toolkit

and evaluating the approach on an example software system.

Paper [V] discusses how VISIOME can be used for combining the UML

model operations to construct new operations with high-level functionality,

and how to describe often-repeated software engineering tasks and to auto-

mate them using the approach. The paper further presents various usage

scenarios and software engineering tasks. The author's contributons include

the joint work of establishing the model processing approach and the presen-

ted usage scenarios, as well as presenting the model operations part of the

paper.

Paper [VI] shows how a use case description, addressing a particular sys-

tem functionality with a set of UML sequence diagrams, can be transformed

into an intermediate statechart diagram, and further into an implementation

scheme, presented in structured pseudocode. The paper further presents a

prototype implementation of the transformation operations. The author's

contributions include specifying and implementing the sequence diagram to

class diagram transformation and pseudocode generation functionality, and

establishing the overall synthesis process.

Paper [VII] describes the overall model processing approach, the UML

processing platform, and the implementation of artDECO on top of this

platform. It is a sequel to the paper by Airaksinen et al [2]. The author's con-

82

tribution includes presenting a synthesis and summarizing the overall model

processing approach.

Paper [VIII] describes the concept of UML set operations for composing

and decomposing models, and for creating transient views of the system for

increased model comprehension. The paper de�nes the operations, gives an

example, and also places the technique in context with analogous techniques,

namely the composition relationship of Subject Oriented Design. The paper

is exclusively contributed by the author.

83

84

Chapter 8

Conclusions

Those are my operations, and if you don't like them. . . well, I have

others.

� Adaptation of Groucho Marx

This thesis proposed a set of model processing operations for manipulating

architecture and design level software engineering models. It was shown how

dependencies between models can be exploited when building the operations,

and how they can be combined to form model processing tasks with higher

level of functionality. It was further shown that the operations can be mean-

ingfully used in real-life software engineering. The introduced techniques

can be de�ned and implemented using UML as the target modeling language

and used as a basis for tool support in computer aided software engineering

environments.

8.1 Thesis Questions Revisited

The questions presented in Chapter 1 are returned to and addressed.

Synthesis of Models. The information implied by existing models can be

expressed with another modeling paradigm using the transformation opera-

tions, if the semantic relationship between the paradigms is strong enough.

With suitable projection operations, the model can also be restructured ac-

cording to given criterion to emphasize an alternative viewpoint.

� How to describe the information implied by an existing model using an-

other modeling paradigm to express a di�erent point of view (e.g. the

85

structure model implied by a behavior model)? Transformation oper-

ations can be used for the synthesis of new models expressed using

a di�erent modeling paradigm. For example, the dynamic execution

traces gathered during the ISA case study were transformed to a struc-

ture model.

� How to compose a model according to a given composition criteria in

order to emphasize an alternative point of view (e.g. architectural con-

cern)? Projection operations can be used to produce a new transi-

ent model of a system model by restructuring it according to di�erent

composition criteria. For example, the ISA architecture model was

recomposed along layers during the case study.

Merging and Slicing of Models. The set operations provide a composi-

tion mechanism for merging together model increments. When accompanied

by suitable transformation operations, the set operations can be further used

for merging together diagrams and model fragments describing di�erent con-

cerns and views to the system, expressed using di�erent modeling paradigms.

� How to allow di�erent stakeholders to introduce model increments to

the system model? Designers can introduce new model increments to

the system model by using the union set operation, and when neces-

sary, tranformation operations. While the ISA case study worked with

complete reverse engineered models, it exploited similar mechanisms

for merging together model increments.

� How to support model comprehension by comparing models describing

the system from di�erent perspectives, possibly using di�erent modeling

paradigms (e.g. static and dynamic views)? Models can be transformed

and compared against each other using set operations, supported by

suitable highlighting and transformation operations. These mechan-

isms were used when slicing the ISA architecture model against execu-

tion traces.

Checking of Models. The conformance operations can be used to check

that the concepts and their relationships in a model are allowed by pro-

�les capturing domain or architecture speci�c constraints and conventions.

Similarly, system composition can be checked against a given composition

criteria. Using the set operations together with transformation and projec-

tion operations, it is possible to check di�erent model fragments against each

other.

86

� How to ensure that the concepts and their relationships in the system

model are in agreement with domain speci�c conventions, rules, and

restrictions? By expressing the conventions, rules, and restrictions us-

ing architectural pro�les, the conformance operations can be used for

validating system models. The pro�le-based validation of ISA platform

architecture model was based on these techniques.

� How to con�rm that architecture or design level models at (e.g. di�erent

stages of evolution) are in agreement with each other? With set oper-

ations, models can be sliced and compared against each other. These

mechanisms were used when comparing di�erent ISA platform releases

against each other.

While the set of questions answered is by no means complete, it goes to show

that the presented model processing approach can be used for addressing

relevant software engineering problems. The presented questions are general

enough to be applied to di�erent problem domains.

8.2 Future Work

While the model processing approach has been implemented and deployed

in practice, there remains several topics for future research. A new version

of the model processing platform is being actively developed and a major

release is expected to be released during the �rst half of 2005. After the

initial positive experiences, work on further case studies on the ISA platform

and another similar system will continue, both with forward engineering and

reverse engineering architecture models.

The scope of this study�processing of architecture and design level soft-

ware engineering models�is broad. Consequently, the thesis only covers

some aspects of the topic in detail while leaving others open for future re-

search. Some of the future work topics include the following:

� Develop the model processing platform and underlying tool support fur-

ther. Support the VISIOME approach by building a library of useful

scripts and associated model processing operations. As our experiences

show that the model processing approach is signi�cantly in�uenced by

the context it is applied to, it is important to ensure tool recon�gur-

ability. This also includes providing additional tools for building the

model processing tasks, related to e.g. user interaction and visualization

techniques.

87

� Examine how to build stronger tool support for di�erent software pro-

cesses, organizations, and domains, and evaluate the usability of the

operations especially during forward engineering.

� Continue developing the architecture maintenance process. One future

direction for extending the approach is to provide tools and techniques

for combining static and dynamic analysis to maintain the consistency

between dynamic and static views of the architecture. Another in-

teresting continuing research topic is the monitoring of architecture

evolution.

� Examine the possibility of developing a reference pro�le engine for in-

terpreting standard UML pro�les and integrating it with the xUMLi

platform for further increasing the generality and con�gurability of the

pro�le based architecture validation approach.

� Examine the possibilities of extending the pro�le approach to new do-

mains, like aligning the model composition mechanisms provided by the

set and projection operations with the aspect oriented design (AOD)

paradigm. Another example is to place the model processing approach

in the context of OMG Model Driven Development and Engineering

(MDD/MDE) movement (e.g. Miller and Mukerji [31]). Evaluate the

applicability of the model processing approach and di�erent model pro-

cessing operations on additional domains. One example is the ongo-

ing work on generating high-level architecture views based on di�erent

user-provided criteria.

Some work has already been completed on providing additional tools for

building the tasks. Initial steps on integrating the approach with a dedicated

software speci�cation methodology have been addressed by Pitkänen and

Selonen [42] in the context of the DisCo method.1 The relationship between

pro�le mechanims and architectural and design pattern concepts has been

explored by Selonen et al [51]. The set operations have been successfully used

for comparing the reverse engineering capabilities of di�erent UML CASE

tools (Kollman et al [26]) and for comparing Web service descriptions (Jiang

et al [22]).

8.3 Concluding Remarks

The goal of the research partly presented in this thesis has been to solve prac-

tical software engineering problems. The presented research aims not solely

1http://disco.cs.tut.�

88

to explore the theoretical foundations of the model processing approach, but

also to implement and provide concrete tools to be deployed and used by

software developers.

Commercial software development projects do not usually conform to the

clean textbook examples. Time-to-market pressure, large organizations with

hundreds of developers with varying skills, the legacy software systems, the

product-lines and platforms, proprietary middleware and hardware, and the

requirement to produce software artefacts of the right quality in �nancial

terms all make it di�cult to apply rigorous methods. Therefore, when not

dealing with safety critical applications, there is a need for scalable architec-

ture and design level tool support that can be con�gured by the designers

to meet the requirements of the process, project, domain and organization

in question. The presented approach aims at providing such support. The

thesis itself presents primitive model processing operations that are expec-

ted to be among the core components when building the higher level tool

support.

During the course of the research, it became evident that it is not feasible

to give rigid de�nitions for individual model processing operations. This is

not only a technological issue. Experience with applying the operations has

shown that the operations have to be parametrized at the UML level for each

usage context individually: it is therefore necessary to keep the operations

and their implementation customizable. A one-to-one translation schema

forces the operations to be tied to a particular context, forces them to lose

their generality, and clutters their de�nitions with modeling language speci�c

details. The model processing approach provides the necessary �exibility to

address this issue. Tool support and customizability are key goals of the

approach and they have been achieved to a certain degree.

To summarize, there is a need for building tool support for architecture

and design level modeling to meet the requirements of a particular process,

domain, product line, or product platform. Model processing operations

provide building blocks for constructing such tools. By combining the op-

erations, it is possible to derive with numerous usage scenarios for dealing

with di�erent problem areas in software engineering. As the development of

the approach has been driven by the practical needs in industry, strong co-

operation with both the industry and academia has been a key driver in the

research and development process. The experiences gained while applying

the approach to large-scale industrial software systems have been promising.

89

90

Bibliography

[1] J. Airaksinen. artDECO � UML-pohjaisten pro�ililähtöisten ohjelmis-

toarkkitehtuurien tarkastustyökalu. Master's thesis, Tampere University

of Technology, September 2004. In Finnish.

[2] J. Airaksinen, K. Koskimies, J. Koskinen, J. Peltonen, P. Selonen,

M. Siikarla, and T. Systä. xUMLi: Torwards a Tool-independent UML

Processing Platform. In K. Østerbye, editor, Proceedings of the 10th

Nordic Workshop on Programming and Software Development Tools and

Techniques, NWPER'2002, pages 1�15. Copenhagen, Denmark, IT Uni-

versity of Copenhagen, August 2002.

[3] M. Alanen and I. Porres. The Coral Modelling Framework. In K. Koski-

mies, L. Kuzniarz, J. Lilius, and I. Porres, editors, Proceedings of the

2nd Nordic Workshop on the Uni�ed Modeling Language NWUML'2004,

TUCS General Publications, pages 93�98. TUCS Turku Centre for Com-

puter Science, July 2004.

[4] A. Biermann and R. Krishnaswamy. Constructing Programs From Ex-

ample Computations. IEEE Transactions on Software Engineering,

3(2):141�153, 1976.

[5] J.-P. Bodeveix, T. Millan, C. Percebois, C. L. Camus, P. Bazex, and

L. Feraud. Extending OCL for verifying UML Models Consistency. In

L. Kuzniarz, G. Reggio, J. Sorrouille, and Z. Huzar, editors, Proceedings

of UML'2002 Workshop on Consistency Problems in UML-based Soft-

ware Development, pages 75�90. Ronneby, Sweden, Blekinge Institute

of Technology Research Report 2002:06, 2002.

[6] G. Booch. Object-Oriented Design with Applications. Ben-

jamin/Cummings Publishing Company, 1991.

[7] S. Burmester, H. Giese, J. Niere, M. Tichy, J. Wadsack, R. Wagner,

L. Wendehals, and A. Zündorf. Tool Integration at the Meta-Model

91

Level within the FUJABA Tool Suite. In Proceedings of the Workshop

on Tool-Integration in System Development (TIS), Helsinki, Finland,

(ESEC / FSE 2003 Workshop 3), pages 51�56, September 2003.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture: System of Patterns. John

Wiley and Sons, 1996.

[9] S. Clarke. Composition of Object-Oriented Software Design Models. PhD

thesis, Dublin City University, January 2001.

[10] S. Clarke, W. H. Harrison, H. Ossher, and P. L. Tarr. Subject-Oriented

Design: Towards Improved Alignment of Requirements, Design, and

Code. In Proceedings of the 1999 ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages and Applications

(OOPSLA'99), pages 325�339, 1999.

[11] A. Egyed. Integrating Architectural Views in UML. Technical Report

USCCSE-99-514, University of Southern California, 1999.

[12] A. Egyed. Automated Abstraction of Class Diagrams. ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 11(4):449�

491, 2002.

[13] A. Egyed and P. B. Kruchten. Rose/Architect: A Tool to Visualize

Architecture. In Proceedings of the 32nd Annual Hawaii Conference on

Systems Sciences (HICSS-32), 1999.

[14] A. Egyed and N. Medvidovic. Extending Architectural Representation

in UML with View Integration. In R. France and B. Rumpe, editors,

Proceedings of the Second International Conference on the Uni�ed Mod-

eling Language, UML'99, pages 2�16. Fort Collins, CO, USA, Springer,

October 1999.

[15] G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A Combined Reference

Model and View Based Approach to System Speci�cation. International

Journal of Engineering and Knowledge Engineering, 4(7):457�477, 1997.

[16] A. Evans and S. Kent. Core Meta-Modelling Semantics of UML: The

pUML Approach. In R. France and B. Rumpe, editors, UML'99 - The

Uni�ed Modeling Language. Beyond the Standard. Second International

Conference, Fort Collins, CO, USA, October 28-30. 1999, Proceedings,

volume 1723 of LNCS, pages 140�155. Springer, 1999.

92

[17] M. Fowler. Refactoring � Improving the Design of Existing Code.

Addison-Wesley, 1999.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns �

Elements of Reusable Object-Orented Software. Addison-Wesley, 1995.

[19] A. Hudaib and C. Montagero. A UML Pro�le to Support the Formal

Presentation of Software Architecture. In Proceedings of 26th Inter-

national Computer Software and Applications Conference (COMPSAC

2002), Prolonging Software Life: Development and Redevelopment,

pages 217�223. Oxford, England, IEEE CS Press, August 2002.

[20] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J. Silva.

Documeting Component and Connector Views with UML 2.0. Technical

Report CMU/SEI-2004-TR-008, Software Engineering Institute (SEI),

April 2004.

[21] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-

Oriented Software Engineering. A Use Case Driven Approach. Addison-

Wesley, 1992.

[22] J. Jiang, J. Lipponen, P. Selonen, and T. Systä. UML-level support for

analyzing and comparing Web service descriptions. In Conference on

Software Maintenance and Re-engineering (CSMR'05), 2005. To appear

as a short paper.

[23] M. M. Kandé and A. Strohmeier. Towards a UML Pro�le for Software

Architecture Descriptions. In A. Evans, S. Kent, and B. Selic, editors,

Proceedings of UML 2000 - The Uni�ed Modeling Language, Advancing

the Standard, Third International Conference, volume 1939 of Lecture

Notes in Computer Science, pages 513�527. York, UK, Springer, 2000.

[24] I. Khriss, M. Elkoutbi, and R. K. Keller. Automating the synthesis of

UML StateChart diagrams from multiple collaboration diagrams. In

J. Bézivin and P.-A. Muller, editors, The Uni�ed Modeling Language,

UML'98 - Beyond the Notation. First International Workshop, Mul-

house, France, June 1998, Selected Papers, volume 1618 of LNCS, pages

132�147. Springer, 1999.

[25] H. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating UML Dia-

grams for Production Control Systems. In Proceedings of the 22nd Inter-

national Conference on Software Engineering (ICSE'00), pages 241�251.

Limerick, Ireland, ACM Press, June 2000.

93

[26] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zündorf. A

Study on Current State of the Art in Tool-Supported UML-Based Static

Reverse Engineering. In Proceedings of the 9th Working Conference

of Reverse Engineering (WCRE'2002), pages 22�34. IEEE CS Press,

October�November 2002.

[27] K. Koskimies, T. Männisto, T. Systä, and J. Tuomi. Automated Sup-

port for Modeling of OO Software. IEEE Software, pages 87�94, Janu-

ary/February 1998.

[28] J. Koskinen, J. Peltonen, P. Selonen, T. Systä, and K. Koskimies. Model

Processing Tools in UML. In Proceedings of ICSE'01, pages 819�820.

IEEE CS Press, May 2001. Formal Research Tool Demo.

[29] J. Koskinen, J. Peltonen, P. Selonen, T. Systä, and K. Koskimies. To-

wards Tool Assisted UML Development Environments. In T. Gyimóthy,

editor, Proceedings of the 7th Symposium on Programming Languages

and Tools (SPLST'01), pages 1�15. University of Szeged, June 2001.

[30] N. Medvidovic, D. Rosenblum, D. Redmiles, and J. Robbins. Modeling

Software Architecture in the Uni�ed Modeling Language. ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 1(11):2�57,

January 2002.

[31] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Technical

report, The Object Management Group, June 2003. On-line at

http://www.omg.org/mda.

[32] K. Nørmark. Synthesis of Program Outlines

from Scenarios in DYNAMO, 1998. On-line at

http://www.cs.auc.dk/�normark/dynamo.html.

[33] D. Ohst, M. Welle, and U. Kelter. Di�erences Between Versions of UML

Diagrams. In Proceedings of the 9th European software engineering con-

ference held jointly with 10th ACM SIGSOFT international symposium

on Foundations of software engineering, pages 227�236. ACM Press,

2003.

[34] OMG. Request for Proposal: UML 2.0 Superstructure RFP, August

2001. ad/00-09-02.

[35] OMG. Meta Object Facility (MOF) Speci�cation, Version 1.4, April

2002. On-line at http://www.omg.org/mof.

94

[36] OMG. Request for Proposal: MOF 2.0 Query / Views / Transformations

RFP, April 2002. ad/2002-04-10.

[37] OMG. Meta Object Facility (MOF) 2.0 Core Speci�cation. Object

Management Group, October 2003. On-line at http://www.omg.org/-

technology/documents/modeling_spec_catalog.htm.

[38] OMG. OMG Uni�ed Modeling Language Speci�cation, Version 1.5

(formal/03-03-01), March 2003. On-line at http://www.omg.org/uml.

[39] OMG. Uni�ed Modeling Language: Superstructure version 2.0 Fi-

nal Adopted Speci�cation ptc/03-08-02, August 2003. On-line at

http://www.omg.org/uml.

[40] OMG. UML Pro�le for Enterprise Distributed Object Com-

puting (EDOC), version 1.0, February 2004. On-line at

http://www.omg.org/uml.

[41] J. Peltonen. Visual Scripting for UML-Based Tools. In Proceedings of

ICSSEA 2000, December 2000.

[42] R. Pitkänen and P. Selonen. A UML Pro�le for Executable and Incre-

mental Speci�cation-Level Modeling. In T. Baar, A. Srohmeier, A. Mor-

eira, and S. J. Mellor, editors, �UML� 2004 � The Uni�ed Modeling

Language: Modeling Languages and Applications, LNCS 3273, pages

158�172. Springer, October 2004.

[43] I. Porres. A Toolkit for Manipulating UML Models. Technical report,

TUCS Turku Centre for Computer Science, January 2002.

[44] I. Porres and M. Alanen. Di�erence and Union of Models. In P. Stevens,

J. Whittle, and G. Booch, editors, UML 2003 - The Uni�ed Model-

ing Language, Modeling Languages and Applications, 6th International

Conference, San Francisco, CA, USA, October 20-24, 2003, Proceed-

ings, volume 2863 of Lecture Notes in Computer Science, pages 2�17.

Springer, 2003.

[45] F. D. Rácz and K. Koskimies. Tool-Supported Compression of UML

Class Diagrams. In R. France and B. Rumpe, editors, UML'99 - The

Uni�ed Modeling Language, Fort Collins, CO, USA, October, 1999, Pro-

ceedings, Lecture Notes in Computer Science, pages 172�187. Springer,

1999.

95

[46] C. Riva. Reverse Architecting: an Industrial Experience Report. In

Proceedings of the 7th Working Conference of Reverse Engineering

(WCRE'2000), pages 42�51. IEEE CS Press, 2000.

[47] C. Riva, J. Xu, and A. Maccari. Architecting and Reverse Architecting

in UML. In A. Brown, W. Kozaczynski, P. Kruchten, and G. Larsen,

editors, Proceedings of ICSE 2001 Workshop for Describing Software

Architecture with UML, pages 88�93. Toronto, Ontario, Canada, IEEE

CS Press, May 2001.

[48] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[49] S. Schönberger, R. Keller, and I. Khriss. Algorithmic Support for Model

Transformation in Object-Oriented Software Development. Concurrency

and Computation: Practise and Experience, 13(5):351�383, 2001.

[50] P. Selonen, K. Koskimies, and M. Sakkinen. How to Make Apples from

Oranges in UML. In Proceedings of the 34th Hawaii International Con-

ference on System Sciences (HICSS-34). IEEE CS Press, January 2001.

CD-ROM.

[51] P. Selonen, M. Siikarla, K. Koskimies, and T. Mikkonen. Towards the

Uni�cation of Patterns and Pro�les in UML. Nordic Journal of Com-

puting, 11(3):235�253, 2004.

[52] M. Siikarla. Implementation of a Component-Based Visual Scripting

Language. Master's thesis, Tampere University of Technology, January

2003.

[53] M. Siikarla, J. Peltonen, and P. Selonen. Combining OCL and Program-

ming Languages for UML Model Processing. In P. H. Schmitt, editor,

Proceedings of the Workshop, OCL 2.0 � Industry Standard or Scienti�c

Playground, volume 102 of Electric Notes in Theoretical Computer Sci-

ence (ENTCS), pages 175�194. Elsevier, 2004.

[54] D. Soni, R. L. Nord, and C. Hofmeister. Software Architecture in In-

dustrial Applications. In Proceedings of International Conference on

Software Engineering ICSE 1995, pages 196�207. Seattle, Washington,

USA, April 1995.

[55] T. Systä. Static and Dynamic Reverse Engineering Techniques for Java

Software Systems. PhD thesis, University of Tampere, 2000.

96

[56] P. Tarr, H. Ossher, W. Harrison, and S. M. S. Jr. N Degrees of Sep-

aration: Multi-Dimensional Separation of Concerns. In Proceedings of

the International Conference on Software Engineering (ICSE 21), pages

107�119. Los Angeles, CA, USA, ACM Press, 1999.

[57] S. Tolvanen. Development Environment for Visual Programing Lan-

guages. Master's thesis, Tampere University of Technology, Institute of

Software Systems, 2004.

[58] J. van der Ven. An Implementation of Set Operations on UML Diagrams.

Master's thesis, Rijksuniversiteit Groningen, Instituut voor Wiskunde

en Informatica, 2004.

[59] J. Whittle and J. Schumann. Generating Statechart Designs from Scen-

arios. In Proceedings of ICSE'00, pages 314�323. Limerick, Ireland,

IEEE CS Press, June 2000.

[60] J. Wikman. Evolution of a Distributed Repository-Based Architecture.

In Proceedings of the �rst Nordic Workshop on Software Architecture

(NOSA'98), 1998.

[61] E. Yourdon. Modern Structured Analysis. Yourdon Press, 1988.

[62] A. Zarras, V. Issarny, C. Kloukinas, and V. K. Kguyen. Towards a

Base UML Pro�le for Architecture Description. In A. Brown, W. Koza-

czynski, P. Kruchten, and G. Larsen, editors, Proceedings of ICSE 2001

Workshop for Describing Software Architecture with UML, pages 22�26.

Toronto, Ontario, Canada, IEEE CS Press, May 2001.

97

98

[I] P. Selonen, K. Koskimies, and M. Sakkinen. Transformations Between

UML Diagrams. Journal of Database Management, 3(14):37�55, 2003.

c
2003 Idea Group Publishing

[II] C. Riva, P. Selonen, T. Systä, and J. Xu. UML-based Reverse En-

gineering and Model Analysis Approaches for Software Architecture

Maintenance. In Proceedings of the International Conference on Soft-

ware Maintenance (ICSM'04), pages 50�59. IEEE Computer Society,

September 2004. c
2004 IEEE CS Press

[III] C. Riva, P. Selonen, T. Systä, A.-P. Tuovinen, J. Xu, and Y. Yang.

Establishing a Software Architecting Environment. In Proceedings

of the 4th Working IEEE/IFIP Conference on Software Architecture

(WICSA'04), pages 188�200. IEEE Computer Society, June 2004.

c
2004 IEEE CS Press

[IV] P. Selonen and J. Xu. Validating UML Models Against Architectural

Pro�les. In Proceedings of the 9th European Software Engineering

Conference held jointly with 10th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (ESEC/FSE 2003),

pages 58�67. ACM Press, 2003. c
2003 ACM Press

[V] J. Peltonen and P. Selonen. Processing UML Models with Visual

Scripts. In Proceedings of the 2001 Human-Centric Computing Lan-

guages and Environments (HCC'01), pages 264�271. IEEE Computer

Society, September 2001. c
2001 IEEE CS Press

[VI] P. Selonen, T. Systä, and K. Koskimies. Generating Structured Im-

plementation Schemes from UML Sequence Diagrams. In L. QiaYun,

R. Riehle, G. Pour, and B. Meyer, editors, Proceedings of the 39th

International Conference on Technology of Object-Oriented Languages

and Systems (TOOLS USA 2001), pages 317�328. IEEE Computer

Society, July-August 2001. c
2001 IEEE CS Press

[VII] J. Peltonen and P. Selonen An Approach and a Platform for Building

UMLModel Processing Tools. In Proceedings of the ICSE'04 Workshop

on Directions of Software Engineering Environments (WoDiSEE'04),

pages 51�57, May 2004.

[VIII] P. Selonen. Set Operations for the Uni�ed Modeling Language. In

P. Kilpeläinen and N. Päivinen, editors, Proceedings of the 8th Sym-

posium on Programming Languages and Tools (SPLST'03), pages 70�

81. University of Kuopio, June 2003.

