
1

Agile/Lean & Safety: Perfect Match or
Impossible Combination?

Mika Katara Matti Vuori
Department of Software Systems
Tampere University of Technology

This presentation reports results of the OHJELMATURVA project. Partial funding from Tekes and the
companies participating in the project is gratefully acknowledged.

Safety Critical Software

• Trend towards using software to implement features that have
been traditionally implemented in hardware

• New complex features implemented in software
• Benefits of a software solution compared to hardware include:

more advanced functionality without need to increase the size
and capacity of the hardware

• Especially in large product quantities, software can provide cost
savings

• Flexible changes are supported without having to change
physical parts

• Large amount of information about the system and its
performance can be gathered for monitoring etc. purposes

2

• Software safety is part of the overall safety of the system
• Software elements can increase system safety, but can also

cause accidents in the case of errors
• The role and interactions of software should be understood when

applied in safety critical systems
• In contrast to hardware and mechanics, there are no tolerances

or safety margins – but software has to be robust
• The concept of reliability is fundamentally different for software

and hardware: since the former does not wear, our confidence
towards a software component increases if it has been in use for
a long time without failures (“proven in use”)

• Software safety is assured by
• Proper the development process: quality + safety assessment
• Verification & Validation activities

3

IEC 61508-3 ed2.0

• While the lifecycle model of IEC 61508-3 ed2.0 is based on
the traditional V-model type of process, some organizations
are moving towards more agile and lean software development
processes and practices

• Some organizations would like to tailor the development process
to be more flexible, but still satisfy the standards’ requirements

• Obviously, such tailoring must not compromise functional safety
• This is challenging because there are obvious ideological

differences between the standard and agile and lean practices
• For instance, the former requires heavy documentation,

while the agile principles promote undocumented face-to-
face communication

• Moreover, while agile embraces change, do we really want to
modify (certified) safety-related software?

4

5

YES!
But it
may
require
some
effort

Software Development Processes

• Plan driven process models are usually based on waterfall and V-
model type of processes

• While using the V-model can provide effective means for
Verification & Validation, it has some well known drawbacks:

• If software is integrated and integration tested late in the
development cycle, problems will appear and they will cause delays
in delivery schedules

• If the customer sees the software in action only in acceptance testing
phase, changes to meet the actual needs may be impossible to
implement (due to schedule and/or budget constraints)

• Often in practice, the requirements for the software part are frozen
during the project, not in its beginning

6

7

Functional
specification

Architecture design

Module design Unit testing

Integration testing

System testing

Requirements
specification

Acceptance testing

Test design
Result verification/
validation

Implementation

• When Winston W. Royce introduced the waterfall model, he
already suggested using iterative and incremental features

• Later, there have been many variations of iterative and
incremental process models

• Iterative and incremental development reduces project risks
compared to the pure V-model

• Agile methods are those which more or less conform to the ideas
introduced in the agile manifesto:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

8

12 Agile Principles + thoughts on safety

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software. How to make sure that
also the safety standards and legislation are satisfied?

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive
advantage. How to make sure that the chance does not
compromise safety?

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.
Should all or most releases satisfy the safety requirements
or only the “final” one (amount of testing needed
manual/automatic)?

4. Business people and developers must work together daily
throughout the project. What is the role of safety engineers?

9

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done. In safety, trust is not enough – in most of the accidents
caused by software, trust or lack of it has not been the issue.

6. The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.
Non-documented communication seldom produces proof
that can be later examined to make sure that the right
decisions have been made.

7. Working software is the primary measure of progress. The term
“working” should probably include “safe”.

8. Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a
constant pace indefinitely. Many safety systems are embedded
– sometimes the schedule of the hardware development
poses restrictions on the software development.

10

9. Continuous attention to technical excellence and good design
enhances agility. Safety needs also continuous attention.

10. Simplicity–the art of maximizing the amount of work not done–
is essential. Safety also requires simplicity so that the
amount of V&V needed remains reasonable.

11. The best architectures, requirements, and designs emerge from
self-organizing teams. There needs to be a single person to
sign the “Confirmation of Conformity”, i.e. to take the
responsibility. Who makes the difficult decisions? Who
provides the second opinion, i.e. independent Verification &
Validation?

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.
Learning is good, but safety needs to be ensured right from
the beginning.

11

Lean

• Originally called lean production, today represents a vision of
good and efficient way of action

• Applied mostly in manufacturing industries, but making its way
into software development

• Originates from Toyota’s car manufacturing
• 14 principles try to capture the essentials of the philosophy

• The Poppendiecks have been the most active in adapting lean
into software production

• Guiding principles: Eliminate Waste, Create Knowledge, Build Quality
In, Defer Commitment, Optimize the Whole, Deliver Fast, Respect
People

• Poppendiecks’ principles are more agile than the original
Toyota’s principles – lean is not the same as agile

12

Lean vs. Agile (Coplien & Bjørnvig 2010)

Lean Agile
Thinking and doing Doing
Inspect-plan-do Do-inspect plan
Feed-forward and feedback (design
for change and respond to change)

Feedback (react to change)

High throughput Low latency
Planning and responding Reacting
Focus on process Focus on people
Teams (working as unit) Individuals (and interactions)
Complicated systems Complex systems
Embrace standards Inspect and adapt
Rework in design adds value, in
making it is waste

Minimize up-front work of any kind
and rework code to get quality

Bring decisions forward (Decision
Structure Matrices)

Defer decisions (to the last
responsible moment)

13

Lean Planning and Documentation

• Lean is sometimes misunderstood as mechanistic “waste hunt”
• Documents and planning are discarded as artifacts and work that

doesn’t produce value – nothing could be further from the truth
• Lean encourages planning to make things more efficient in

execution and understands that documents are necessary to
capture information, but the main use for them is to share
knowledge between all people in the company, not just inside
one team – thinking of the whole, and in the long term

• While lean manufacturing tries to maximize throughput by careful
planning, what is the equivalent in software development?

• Plans should be constantly updated as we learn new things about the
system under development – changing requirements

• Lean is plan-driven!

14

Pros and Cons of Plan-Driven Methods

• Pros: easy to grasp, clarity, lots of experiences and tool support
• Pre-study phase enables giving price and schedule estimates,

dividing responsibilities
• V-model requires well planned and continuous testing

• Cons: does not support heavy changes, assumes “perfect”
requirements

• Estimates on price and schedule often prove to be wrong
• Tries to solve the problems in too big chunks
• Bears big risk on producing something that does not correspond to

the actual needs of the customer or end-user

15

Pros and Cons of Agile Methods

• Pros:
• flexibility, “embracing changes”, do not rely on “perfect” requirements,

close collaboration with the customer
• Cons:

• “Working software over comprehensive documentation” is usually
interpreted as “working software is enough, no need to document
anything” since developers don’t like to write documentation and
documents are burdensome to keep up-to-date

• The role of software architecture maybe easily overlooked, unless the
method used places special emphasis on that

• Too much hype, too little experiences on what works and in which
contexts

• Requires skillful staff and a customer who is available on a daily
basis

• Embracing changes may lead to short-sighted solutions

16

Perfect Match or Impossible
Combination?

• In the literature, there are many different views on how well agile
and lean methods suit for creating safety-critical products

• Reported experiences in applying agile methods at least in the
context of DO-178B standard for airborne software

• Problems related to light design and documentation, refactoring,
and the lack of systematic working methods

• Also the interplay between software architecture and design is a
problem in the case of frequent changes

• Refactoring the architecture of large and complex systems can
be hard and it requires above average skills from the developers

17

• Refactoring the architecture and code can make the system
clearer and more understandable

• Extensive regression testing and continuous integration can
mitigate the risks involved in refactoring

• In safety-critical systems it might be necessary to prohibit the
refactoring of large chunks at a time

• “License to refactor” can also be limited to certain developers only
(very much against the agile philosophy)

18

• Collaboration, incremental and iterative development are pros
• It is important to share understanding on the requirements
• Discussing a requirement within the team can be very productive

• In practice, some hazards can be overlooked in the beginning of
the project, thus, they should be reviewed in iterations in the light
of new knowledge gained in the project

• Agile teams are in charge of the development, it is thus vital that
the team understands its responsibility, and is committed to
following the rules instead of the “the way of hacking “

• In some cases, the self organizing nature of the teams may have to
be limited?

19

• Special emphasis is needed to make sure that the work is done is
a systematic and accurate manner, and that documentation and
architecture are emphasized as well as the clarity and traceability
of the implementation

• However, some of the agility may be lost
• This can be alleviated by:

• Test automation (regression testing & coverage)
• Automatic document creation (if possible)
• Requirements management (must)
• Using tools to trace requirements (other than Excel)
• Making reviews more effective (homeworkless reviews etc.)

• Due to the burden or re-verification and re-validation, it is vital to
limit the impacts of changes during the whole project

20

Conclusions

• Current agile/lean software developments methods are not
applicable to the development of safety-critical software as such

• However, mixing some of the principles of these methods with
some proven techniques may provide a satisfactory solution

• Balancing between these two worlds can be difficult
• If the organization is already using V-model type of development,

agility/leanness can be increased with the following, for instance:
• Iterative and incremental process
• Close collaboration and communication with the customer/end-user

and between the teams
• Tools for life-cycle management of requirements and traceability
• Test automation
• Continuous integration
• Clear and modifiable code and architecture

21

• Documentation can be partly automated using tools, but there is
no way to escape the burden completely

• Maintenance and reviews of documents need special attention
• Documentation should probably be limited to just meet the

requirements of the standards
• Agile/lean requires new skills and ability to work in small teams
• It is probably wise to start with the V-model type of process,

trying to include some agile and lean principles one by one,
rather than the other way around

• While the standard requires some ordering on tasks based on the
V-model, the tasks should be assigned to iterations

• In practice, not all the required tasks need to be done in all iterations
• This emphasizes the role of planning the contents of the

iterations, and can be quite challenging in a strictly time-boxed
context

22

Steps Towards Productivity in Safety

• More thorough unit testing
and code quality assurance so that there
is a solid base for changing the product.
• Continuous integration so
that there is always a working product at
hand to assess & reflect.
• System-level test automation.
Automating as much of any tasks that
are required for verification and
validation.
• Process automation –
automated reporting tools and
information systems that can easily be
tailored to changing situations in a
project.
• Automated tracing. When a
requirement or design or implementation
is being planned to change, has
changed, tools are needed to
immediately see the effects and what
needs to be addressed.

• More self-reflection in the
process. All participants need to look into
the product and process frequently to
see what in their way of action needs to
be improved. This calls for frequent
lessons learned / retrospect meetings in
the process.
• Team building and improved
leading of teams. Teams need to able to
work as teams and learning that, and
learning to lead teams in more
collaborative ways, takes a time.
• Improved communications
tools. Anything that helps people to
communicate better, yet giving a
peaceful environment to those tasks and
persons that benefit from it.

23

Thank You

Contact:
Mika Katara
Department of Software Systems
Tampere University of Technology
mika.katara@tut.fi
P: +358 40 849 0743

Further reading:
Jani Paalijärvi : "Development of Safety-Critical Software using
Agile Methods", Master of Science Thesis, Tampere University of
Technology, May 2010.

24

mailto:mika.katara@tut.fi

